Normalized defining polynomial
\( x^{20} - x^{19} - 31 x^{18} + 54 x^{17} + 295 x^{16} - 593 x^{15} - 1341 x^{14} + 2743 x^{13} + 3556 x^{12} - 6400 x^{11} - 6059 x^{10} + 8079 x^{9} + 6400 x^{8} - 5702 x^{7} - 3903 x^{6} + 2227 x^{5} + 1254 x^{4} - 438 x^{3} - 181 x^{2} + 30 x + 9 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(32913322237994155701330478515625=5^{10}\cdot 71^{2}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 71, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{23} a^{18} - \frac{7}{23} a^{17} + \frac{1}{23} a^{16} + \frac{3}{23} a^{15} - \frac{9}{23} a^{14} + \frac{6}{23} a^{13} + \frac{1}{23} a^{12} + \frac{9}{23} a^{11} - \frac{4}{23} a^{10} - \frac{3}{23} a^{9} + \frac{2}{23} a^{8} + \frac{1}{23} a^{7} + \frac{3}{23} a^{6} - \frac{3}{23} a^{5} - \frac{5}{23} a^{4} + \frac{10}{23} a^{3} + \frac{2}{23} a^{2} + \frac{2}{23} a - \frac{6}{23}$, $\frac{1}{163900457060182889631} a^{19} + \frac{2253673001067039164}{163900457060182889631} a^{18} - \frac{7016403115981377598}{163900457060182889631} a^{17} - \frac{20679482205192948287}{54633485686727629877} a^{16} - \frac{49244738293817939810}{163900457060182889631} a^{15} + \frac{4685418887121136072}{163900457060182889631} a^{14} - \frac{4391682646919850262}{54633485686727629877} a^{13} + \frac{3032965574702565923}{7126106828703603897} a^{12} + \frac{32811295129189813861}{163900457060182889631} a^{11} + \frac{77306250258024203363}{163900457060182889631} a^{10} + \frac{28346799539637779599}{163900457060182889631} a^{9} - \frac{6035589333551108853}{54633485686727629877} a^{8} + \frac{14229521466838236766}{163900457060182889631} a^{7} - \frac{55308737573591140871}{163900457060182889631} a^{6} - \frac{24270578049108651493}{54633485686727629877} a^{5} + \frac{3092580550259280472}{12607727466167914587} a^{4} - \frac{23707137993430693423}{54633485686727629877} a^{3} + \frac{11725466485492454412}{54633485686727629877} a^{2} - \frac{61285077287366226565}{163900457060182889631} a + \frac{27131759973040690005}{54633485686727629877}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 834605177.945 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 640 |
| The 40 conjugacy class representatives for t20n141 |
| Character table for t20n141 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.160801.1, 10.8.5737013355221875.1, 10.10.80803005003125.1, 10.8.1835844273671.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $71$ | 71.2.1.1 | $x^{2} - 71$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 71.2.1.1 | $x^{2} - 71$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 401 | Data not computed | ||||||