Normalized defining polynomial
\( x^{20} - 6 x^{19} + x^{18} + 21 x^{17} - 102 x^{16} + 1334 x^{15} - 3485 x^{14} - 840 x^{13} + 7595 x^{12} - 40626 x^{11} + 228412 x^{10} - 279903 x^{9} - 634103 x^{8} + 1697024 x^{7} - 862745 x^{6} - 723776 x^{5} + 757692 x^{4} - 108596 x^{3} - 63711 x^{2} + 16233 x - 109 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3281763883433900353692902429195567104=2^{16}\cdot 33769^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $66.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 33769$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{92929284128112905902541347525692766267922158562} a^{19} + \frac{4001856805165000773706959360412781728037780216}{46464642064056452951270673762846383133961079281} a^{18} + \frac{8835501422812454679990810567467089295687721541}{46464642064056452951270673762846383133961079281} a^{17} - \frac{12132342694173904752225629934626948046182124267}{92929284128112905902541347525692766267922158562} a^{16} + \frac{15486087196012533189226441268271482388668212481}{92929284128112905902541347525692766267922158562} a^{15} + \frac{10003565647831953642499109611026446840785707248}{46464642064056452951270673762846383133961079281} a^{14} - \frac{23381955165011901436188178340661181643527393855}{92929284128112905902541347525692766267922158562} a^{13} - \frac{6314023512787370647343917646790218331660225612}{46464642064056452951270673762846383133961079281} a^{12} - \frac{8446042028497715682402029853881265682337603140}{46464642064056452951270673762846383133961079281} a^{11} + \frac{14838348748044791305896134842211824586831679838}{46464642064056452951270673762846383133961079281} a^{10} - \frac{17426807748191298481923883347044756886803084946}{46464642064056452951270673762846383133961079281} a^{9} - \frac{45339039972357437139338103303897275468707252113}{92929284128112905902541347525692766267922158562} a^{8} - \frac{22568997446414075540372212103747995367205437369}{46464642064056452951270673762846383133961079281} a^{7} + \frac{11590227820398937700228778545696889425086716903}{92929284128112905902541347525692766267922158562} a^{6} - \frac{22272370368387933266902637468577189330372933956}{46464642064056452951270673762846383133961079281} a^{5} + \frac{7919085645585869340716709116063284660962993099}{92929284128112905902541347525692766267922158562} a^{4} - \frac{258310044851261417119931512563311527460292711}{92929284128112905902541347525692766267922158562} a^{3} + \frac{40063136273043736674233163334013853279778674325}{92929284128112905902541347525692766267922158562} a^{2} - \frac{17480761229016121400503681609737405067486923946}{46464642064056452951270673762846383133961079281} a - \frac{37960568378155001654052729275852755765588607465}{92929284128112905902541347525692766267922158562}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 249520888476 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 126 conjugacy class representatives for t20n671 are not computed |
| Character table for t20n671 is not computed |
Intermediate fields
| 5.5.135076.1, 10.10.616133159929744.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 2.12.16.16 | $x^{12} - 54 x^{10} - 509 x^{8} - 964 x^{6} - 777 x^{4} - 934 x^{2} + 357$ | $6$ | $2$ | $16$ | 12T30 | $[4/3, 4/3, 2]_{3}^{2}$ | |
| 33769 | Data not computed | ||||||