Normalized defining polynomial
\( x^{20} - 6 x^{19} - 7 x^{18} + 85 x^{17} + 73 x^{16} - 830 x^{15} - 505 x^{14} + 5786 x^{13} - 459 x^{12} - 20884 x^{11} + 10712 x^{10} + 35908 x^{9} - 25374 x^{8} - 29369 x^{7} + 21932 x^{6} + 11099 x^{5} - 7292 x^{4} - 1579 x^{3} + 710 x^{2} + 81 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(31427919143590467585816658408329=3^{6}\cdot 401^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{6} a^{16} + \frac{1}{6} a^{15} + \frac{1}{6} a^{14} - \frac{1}{6} a^{13} + \frac{1}{3} a^{12} - \frac{1}{2} a^{11} - \frac{1}{3} a^{10} - \frac{1}{6} a^{9} + \frac{1}{6} a^{8} + \frac{1}{6} a^{7} + \frac{1}{6} a^{6} - \frac{1}{2} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{6} a^{17} - \frac{1}{3} a^{14} - \frac{1}{2} a^{13} + \frac{1}{6} a^{12} + \frac{1}{6} a^{11} + \frac{1}{6} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{6} - \frac{1}{6} a^{5} + \frac{1}{3} a^{4} + \frac{1}{6} a^{2} - \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{6} a^{18} + \frac{1}{6} a^{15} - \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{6} a^{11} - \frac{1}{6} a^{10} - \frac{1}{2} a^{8} - \frac{1}{6} a^{7} + \frac{1}{3} a^{6} - \frac{1}{6} a^{5} - \frac{1}{2} a^{4} + \frac{1}{6} a^{3} - \frac{1}{6} a^{2} + \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{25387989477577193899846531518} a^{19} + \frac{495144002571444455231562821}{8462663159192397966615510506} a^{18} + \frac{439066456986587618911058498}{12693994738788596949923265759} a^{17} + \frac{1728765431474784832497614893}{25387989477577193899846531518} a^{16} - \frac{736283788809026980411136488}{4231331579596198983307755253} a^{15} + \frac{4333860429110331035241257369}{25387989477577193899846531518} a^{14} + \frac{5805915964180361831217067159}{25387989477577193899846531518} a^{13} - \frac{5516890016468108199581838509}{12693994738788596949923265759} a^{12} + \frac{109951459572983652239008276}{4231331579596198983307755253} a^{11} + \frac{5249791682464699789226576525}{12693994738788596949923265759} a^{10} - \frac{12594922116352022324582816209}{25387989477577193899846531518} a^{9} - \frac{11754228462885916609700400847}{25387989477577193899846531518} a^{8} + \frac{429045562553341262785473331}{12693994738788596949923265759} a^{7} - \frac{3512917056681941374666617472}{12693994738788596949923265759} a^{6} + \frac{3020917721148013692042485939}{25387989477577193899846531518} a^{5} + \frac{27038029894460774826513017}{61771263935710934062886938} a^{4} - \frac{94694020063251198811420616}{12693994738788596949923265759} a^{3} - \frac{3142994836415897965217447513}{8462663159192397966615510506} a^{2} + \frac{8014176227480344143823025957}{25387989477577193899846531518} a + \frac{5541781157824457506213426399}{12693994738788596949923265759}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 966729252.301 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_2^4:C_5).C_2$ (as 20T84):
| A solvable group of order 320 |
| The 20 conjugacy class representatives for $(C_2\times C_2^4:C_5).C_2$ |
| Character table for $(C_2\times C_2^4:C_5).C_2$ |
Intermediate fields
| \(\Q(\sqrt{401}) \), 5.5.160801.1 x5, 10.10.10368641602001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 401 | Data not computed | ||||||