Normalized defining polynomial
\( x^{20} - x^{19} - 48 x^{18} + 59 x^{17} + 852 x^{16} - 1472 x^{15} - 6765 x^{14} + 18479 x^{13} + 19331 x^{12} - 115489 x^{11} + 62348 x^{10} + 346538 x^{9} - 611373 x^{8} - 430728 x^{7} + 1650437 x^{6} + 83930 x^{5} - 1817602 x^{4} + 272865 x^{3} + 763668 x^{2} - 172476 x - 58887 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(271489728101173730019304802954487841=67^{8}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $67, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{16} - \frac{1}{3} a^{14} + \frac{1}{3} a^{12} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3609} a^{18} - \frac{214}{3609} a^{17} - \frac{332}{1203} a^{16} - \frac{535}{3609} a^{15} + \frac{10}{1203} a^{14} + \frac{1633}{3609} a^{13} - \frac{43}{1203} a^{12} - \frac{565}{3609} a^{11} - \frac{472}{3609} a^{10} + \frac{977}{3609} a^{9} + \frac{2}{3609} a^{8} - \frac{1198}{3609} a^{7} - \frac{581}{1203} a^{6} + \frac{70}{1203} a^{5} + \frac{44}{3609} a^{4} + \frac{641}{3609} a^{3} + \frac{926}{3609} a^{2} - \frac{124}{401} a - \frac{95}{401}$, $\frac{1}{731734636987285422155316334479507002076910324973121} a^{19} + \frac{11337995107063321137800589255354760378075145441}{731734636987285422155316334479507002076910324973121} a^{18} - \frac{15718901791934076519126126514618743300202888425034}{243911545662428474051772111493169000692303441657707} a^{17} - \frac{357634684812899281578444644608740901036001421268849}{731734636987285422155316334479507002076910324973121} a^{16} - \frac{3198507448485612228163593926326251785801542175203}{243911545662428474051772111493169000692303441657707} a^{15} + \frac{106634595511132912551498093499616057110340253341884}{731734636987285422155316334479507002076910324973121} a^{14} - \frac{89351386779935589673803185237575285770836607812105}{243911545662428474051772111493169000692303441657707} a^{13} + \frac{253994512385085525240407426679427005774416091250922}{731734636987285422155316334479507002076910324973121} a^{12} - \frac{200374392071901136697431974709318690720994235687751}{731734636987285422155316334479507002076910324973121} a^{11} - \frac{306778554871198417556373323817733543184620684171711}{731734636987285422155316334479507002076910324973121} a^{10} + \frac{238966686220743173572632893998988657947790007167156}{731734636987285422155316334479507002076910324973121} a^{9} + \frac{213447122862495783936248296090605444843401972628518}{731734636987285422155316334479507002076910324973121} a^{8} + \frac{119360863787641168118506478130875107684832550098843}{243911545662428474051772111493169000692303441657707} a^{7} + \frac{102755500373315971126443447885205539209793236330986}{243911545662428474051772111493169000692303441657707} a^{6} - \frac{309233855894621826640345988144308074613893316340179}{731734636987285422155316334479507002076910324973121} a^{5} + \frac{275000046767577757364147113206216891291921970617830}{731734636987285422155316334479507002076910324973121} a^{4} - \frac{58615484650949845480662133271919226670225768691199}{731734636987285422155316334479507002076910324973121} a^{3} + \frac{49387440545124598717116324978674158125146102312506}{243911545662428474051772111493169000692303441657707} a^{2} - \frac{697021114821499544949460994474905872506719421302}{2197401312274130396862811815253774781011742717637} a - \frac{11211761151247782477807519900382763723185385343887}{27101282851380941561308012388129888965811493517523}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 94501954812.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 104 conjugacy class representatives for t20n313 are not computed |
| Character table for t20n313 is not computed |
Intermediate fields
| 5.5.160801.1, 10.10.116071900626889.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 67 | Data not computed | ||||||
| 401 | Data not computed | ||||||