Normalized defining polynomial
\( x^{20} - x^{19} - 50 x^{18} + 55 x^{17} + 929 x^{16} - 954 x^{15} - 8930 x^{14} + 7482 x^{13} + 50016 x^{12} - 28139 x^{11} - 169371 x^{10} + 42618 x^{9} + 340575 x^{8} + 10081 x^{7} - 383278 x^{6} - 92982 x^{5} + 220924 x^{4} + 92079 x^{3} - 45039 x^{2} - 25974 x - 1521 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2545661450630827874451149331074649=3^{10}\cdot 401^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{6} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{7} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{6} a^{15} - \frac{1}{6} a^{13} + \frac{1}{6} a^{11} - \frac{1}{3} a^{9} - \frac{1}{2} a^{8} + \frac{1}{3} a^{7} - \frac{1}{6} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{16} - \frac{1}{6} a^{14} - \frac{1}{6} a^{12} + \frac{1}{3} a^{10} + \frac{1}{6} a^{9} + \frac{1}{3} a^{8} - \frac{1}{6} a^{7} - \frac{1}{3} a^{5} + \frac{1}{6} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{17} - \frac{1}{6} a^{11} - \frac{1}{2} a^{10} + \frac{1}{3} a^{8} - \frac{1}{2} a^{6} - \frac{1}{3} a^{5} - \frac{1}{2} a^{3} - \frac{1}{6} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{18} - \frac{1}{6} a^{12} - \frac{1}{2} a^{11} + \frac{1}{3} a^{9} - \frac{1}{2} a^{7} - \frac{1}{3} a^{6} - \frac{1}{2} a^{4} - \frac{1}{6} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{40318043098279997476933984488882} a^{19} - \frac{45201808237184462669630686210}{6719673849713332912822330748147} a^{18} - \frac{430772980522730569672457642852}{6719673849713332912822330748147} a^{17} + \frac{105372070412659808199638096207}{20159021549139998738466992244441} a^{16} + \frac{544868423211991824417935727746}{6719673849713332912822330748147} a^{15} - \frac{987723874287923319650860393484}{6719673849713332912822330748147} a^{14} - \frac{5310399399266314238446260015}{253572598102389921238578518798} a^{13} - \frac{869688669392848318570905912787}{13439347699426665825644661496294} a^{12} + \frac{604681653645751865762894417566}{20159021549139998738466992244441} a^{11} + \frac{8012093679612136560297593200189}{20159021549139998738466992244441} a^{10} - \frac{6297248150060062004791777095895}{20159021549139998738466992244441} a^{9} - \frac{19470872376675639140657202262973}{40318043098279997476933984488882} a^{8} + \frac{141611500865486551551425368043}{380358897153584881857867778197} a^{7} + \frac{2155762881777471478299194337646}{6719673849713332912822330748147} a^{6} + \frac{113114214990790085763447176135}{40318043098279997476933984488882} a^{5} - \frac{203458075213240793687472088429}{760717794307169763715735556394} a^{4} - \frac{3211330440325576371097220670587}{40318043098279997476933984488882} a^{3} + \frac{376714880371098242665301214661}{3101387930636922882841075729914} a^{2} - \frac{2232955128909926922936193354322}{6719673849713332912822330748147} a + \frac{168336277776937782476211911949}{516897988439487147140179288319}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10258760614.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_2^4:C_5).C_2$ (as 20T84):
| A solvable group of order 320 |
| The 20 conjugacy class representatives for $(C_2\times C_2^4:C_5).C_2$ |
| Character table for $(C_2\times C_2^4:C_5).C_2$ |
Intermediate fields
| \(\Q(\sqrt{401}) \), 5.5.160801.1 x5, 10.10.10368641602001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 401 | Data not computed | ||||||