Normalized defining polynomial
\( x^{20} - 4 x^{19} - 8 x^{18} - 116 x^{17} - 765 x^{16} - 12 x^{15} + 14440 x^{14} + 106828 x^{13} + 295185 x^{12} - 70732 x^{11} - 1504642 x^{10} - 1333928 x^{9} + 2312296 x^{8} + 3361668 x^{7} - 1062072 x^{6} - 2870084 x^{5} - 204528 x^{4} + 837312 x^{3} + 116368 x^{2} - 64768 x + 4178 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2450305023038293482939005059275616681984=2^{50}\cdot 31^{10}\cdot 227^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $93.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 31, 227$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{167635797601132549917883392469076346947827754773704298134193} a^{19} + \frac{53272895912521600003829095237586963452254702702871065677945}{167635797601132549917883392469076346947827754773704298134193} a^{18} + \frac{49508707652022947416188360082568513019450544718970757541547}{167635797601132549917883392469076346947827754773704298134193} a^{17} + \frac{54836654231810993563789741673789503068283523512429279106656}{167635797601132549917883392469076346947827754773704298134193} a^{16} - \frac{21231750848812187667237690117386860094922932178560363266400}{167635797601132549917883392469076346947827754773704298134193} a^{15} - \frac{20922029259904474407945574250211516472923413221394385326945}{167635797601132549917883392469076346947827754773704298134193} a^{14} + \frac{58800364400372885327396734495483320467189580092248678942068}{167635797601132549917883392469076346947827754773704298134193} a^{13} + \frac{7348949105405522271589142468829928877124912512551045871861}{167635797601132549917883392469076346947827754773704298134193} a^{12} + \frac{30463062386211092643186943785744925921533118895265190202259}{167635797601132549917883392469076346947827754773704298134193} a^{11} - \frac{9751358814479005921943865549913171925675372741114713463139}{167635797601132549917883392469076346947827754773704298134193} a^{10} - \frac{5056441323487406397964639809530895512739790802637788290357}{167635797601132549917883392469076346947827754773704298134193} a^{9} - \frac{41938615510523265840301117289260065154159795801875273012433}{167635797601132549917883392469076346947827754773704298134193} a^{8} - \frac{51836517301086821968238339779271682515567951834907662898455}{167635797601132549917883392469076346947827754773704298134193} a^{7} - \frac{56887316639764344192393148807029760185699048463550982559418}{167635797601132549917883392469076346947827754773704298134193} a^{6} + \frac{50306605930535045927473438460874546046954388089674398503306}{167635797601132549917883392469076346947827754773704298134193} a^{5} - \frac{65760234076935678455338450123764516092956021137597409643610}{167635797601132549917883392469076346947827754773704298134193} a^{4} - \frac{5159322117482856964911684395941615929504006643803686626880}{167635797601132549917883392469076346947827754773704298134193} a^{3} + \frac{55950574357590863360197478243208654245108275987407136517804}{167635797601132549917883392469076346947827754773704298134193} a^{2} - \frac{78722348091766969626122511553415132269683545523713864925472}{167635797601132549917883392469076346947827754773704298134193} a + \frac{6914297027551742073152075701521285495781109659129337160604}{167635797601132549917883392469076346947827754773704298134193}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16330595940100 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 216 conjugacy class representatives for t20n1025 are not computed |
| Character table for t20n1025 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 10.10.207699287474176.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | $16{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | $16{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | $16{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | R | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.7 | $x^{8} + 2 x^{4} + 16 x + 4$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ |
| 2.12.28.57 | $x^{12} + 2 x^{10} - 2 x^{8} + 4 x^{5} - 2 x^{4} - 2$ | $12$ | $1$ | $28$ | 12T48 | $[2, 8/3, 8/3, 3]_{3}^{2}$ | |
| $31$ | $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.6.5.5 | $x^{6} + 10633$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 31.10.5.1 | $x^{10} - 1922 x^{6} + 923521 x^{2} - 2862915100$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 227 | Data not computed | ||||||