Normalized defining polynomial
\( x^{20} - 8 x^{19} + 14 x^{18} + 40 x^{17} - 135 x^{16} - 24 x^{15} + 282 x^{14} + 306 x^{13} - 543 x^{12} - 2060 x^{11} + 2840 x^{10} + 3536 x^{9} - 6398 x^{8} - 1810 x^{7} + 5674 x^{6} - 6 x^{5} - 1937 x^{4} + 124 x^{3} + 126 x^{2} - 22 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2376038017203857413535432704=2^{30}\cdot 38569^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 38569$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{17} a^{18} - \frac{3}{17} a^{17} + \frac{2}{17} a^{16} + \frac{7}{17} a^{15} + \frac{8}{17} a^{14} + \frac{3}{17} a^{13} - \frac{2}{17} a^{12} - \frac{1}{17} a^{11} + \frac{7}{17} a^{10} - \frac{5}{17} a^{9} - \frac{3}{17} a^{8} + \frac{4}{17} a^{7} + \frac{5}{17} a^{6} - \frac{5}{17} a^{5} + \frac{3}{17} a^{4} - \frac{6}{17} a^{3} - \frac{3}{17} a^{2} + \frac{6}{17} a - \frac{6}{17}$, $\frac{1}{1639620695342810521} a^{19} + \frac{755537934024749}{1639620695342810521} a^{18} + \frac{47926078957645766}{1639620695342810521} a^{17} - \frac{794832412194662909}{1639620695342810521} a^{16} + \frac{78933582134345371}{1639620695342810521} a^{15} + \frac{618876064027076023}{1639620695342810521} a^{14} + \frac{346978046539199908}{1639620695342810521} a^{13} - \frac{132163559937991761}{1639620695342810521} a^{12} + \frac{325585099441585165}{1639620695342810521} a^{11} - \frac{414917816581969504}{1639620695342810521} a^{10} + \frac{244993972645505169}{1639620695342810521} a^{9} - \frac{524118557028804598}{1639620695342810521} a^{8} + \frac{112930546747537940}{1639620695342810521} a^{7} + \frac{612373907400486182}{1639620695342810521} a^{6} + \frac{70985577624519248}{149056426849346411} a^{5} - \frac{264358108473586441}{1639620695342810521} a^{4} - \frac{586787816974460236}{1639620695342810521} a^{3} + \frac{345434766782283334}{1639620695342810521} a^{2} + \frac{66006295706752656}{1639620695342810521} a - \frac{144299292218195359}{1639620695342810521}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5151639.08353 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 126 conjugacy class representatives for t20n669 are not computed |
| Character table for t20n669 is not computed |
Intermediate fields
| 5.5.38569.1, 10.8.1523269387264.1, 10.8.1523269387264.2, 10.10.1523269387264.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 38569 | Data not computed | ||||||