Normalized defining polynomial
\( x^{20} - 2 x^{19} - 45 x^{18} + 83 x^{17} + 705 x^{16} - 945 x^{15} - 5059 x^{14} + 1666 x^{13} + 16605 x^{12} + 33271 x^{11} - 10497 x^{10} - 242262 x^{9} - 90661 x^{8} + 750086 x^{7} + 306672 x^{6} - 1278764 x^{5} - 517235 x^{4} + 1203120 x^{3} + 548219 x^{2} - 487098 x - 269469 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(191976696673085084180853546142578125=5^{15}\cdot 97^{2}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 97, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{11} + \frac{1}{3} a^{9} - \frac{1}{3} a^{6} - \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{15} + \frac{1}{9} a^{14} + \frac{1}{9} a^{13} - \frac{1}{3} a^{11} - \frac{2}{9} a^{10} + \frac{2}{9} a^{9} + \frac{1}{9} a^{8} - \frac{2}{9} a^{7} - \frac{2}{9} a^{6} + \frac{4}{9} a^{5} + \frac{2}{9} a^{4} - \frac{1}{9} a^{3} - \frac{2}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{27} a^{17} - \frac{1}{27} a^{16} - \frac{1}{27} a^{15} - \frac{4}{27} a^{14} + \frac{4}{27} a^{13} + \frac{10}{27} a^{11} + \frac{1}{3} a^{9} + \frac{11}{27} a^{8} - \frac{1}{27} a^{7} + \frac{8}{27} a^{6} - \frac{2}{9} a^{5} - \frac{11}{27} a^{4} - \frac{1}{3} a^{3} - \frac{5}{27} a^{2} + \frac{1}{3}$, $\frac{1}{1863} a^{18} + \frac{8}{621} a^{17} - \frac{98}{1863} a^{16} - \frac{83}{1863} a^{15} + \frac{34}{621} a^{14} - \frac{62}{1863} a^{13} - \frac{170}{1863} a^{12} + \frac{511}{1863} a^{11} + \frac{32}{207} a^{10} + \frac{344}{1863} a^{9} - \frac{500}{1863} a^{8} + \frac{163}{1863} a^{7} + \frac{365}{1863} a^{6} + \frac{73}{1863} a^{5} - \frac{221}{1863} a^{4} - \frac{37}{81} a^{3} - \frac{791}{1863} a^{2} - \frac{5}{23} a - \frac{80}{207}$, $\frac{1}{196621669554279868292665724528370093081} a^{19} - \frac{46469537484913126996402798307967377}{196621669554279868292665724528370093081} a^{18} + \frac{2599111703282768988290597232266711545}{196621669554279868292665724528370093081} a^{17} - \frac{5611949912681699696454900400658844685}{196621669554279868292665724528370093081} a^{16} + \frac{4796862779440199543794091464451297278}{196621669554279868292665724528370093081} a^{15} - \frac{5596767114999996864212735757241231781}{196621669554279868292665724528370093081} a^{14} - \frac{16690535497833846964505175610858357915}{196621669554279868292665724528370093081} a^{13} + \frac{6057901386224145054198679394515885304}{196621669554279868292665724528370093081} a^{12} - \frac{81742712284049664046218231172420302716}{196621669554279868292665724528370093081} a^{11} + \frac{4848466293938220682101255776516293154}{196621669554279868292665724528370093081} a^{10} - \frac{5115716571652289372153803294527079810}{21846852172697763143629524947596677009} a^{9} - \frac{18993907946763288459961564097918371555}{196621669554279868292665724528370093081} a^{8} + \frac{10680620642859331404263016090913675973}{21846852172697763143629524947596677009} a^{7} + \frac{11307586197407739590842073861461226579}{65540556518093289430888574842790031027} a^{6} + \frac{20190867426325165369748630113032136544}{196621669554279868292665724528370093081} a^{5} + \frac{66748234859883686960188519218255424331}{196621669554279868292665724528370093081} a^{4} + \frac{68567296833449966368496861104918081313}{196621669554279868292665724528370093081} a^{3} + \frac{55227567583489307843514399947512668703}{196621669554279868292665724528370093081} a^{2} - \frac{4085145245455786336765500762637263488}{21846852172697763143629524947596677009} a + \frac{722148873543288400871230100777413}{57643409426643174521449933898671971}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 125320707035 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 100 conjugacy class representatives for t20n426 are not computed |
| Character table for t20n426 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.160801.1, 10.10.80803005003125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | R | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $97$ | 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 401 | Data not computed | ||||||