Normalized defining polynomial
\( x^{20} - 5 x^{19} + 20 x^{18} - 30 x^{17} - 285 x^{16} + 974 x^{15} - 890 x^{14} + 1610 x^{13} + 3710 x^{12} - 30280 x^{11} + 14616 x^{10} + 78985 x^{9} - 53965 x^{8} - 83990 x^{7} + 51670 x^{6} + 46314 x^{5} - 18255 x^{4} - 13680 x^{3} + 1645 x^{2} + 1665 x + 171 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(191976696673085084180853546142578125=5^{15}\cdot 97^{2}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 97, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5} a^{4} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{5} + \frac{1}{5}$, $\frac{1}{5} a^{6} + \frac{1}{5} a$, $\frac{1}{5} a^{7} + \frac{1}{5} a^{2}$, $\frac{1}{25} a^{8} - \frac{2}{25} a^{7} - \frac{2}{25} a^{6} + \frac{1}{25} a^{5} + \frac{1}{25} a^{3} - \frac{2}{25} a^{2} - \frac{2}{25} a + \frac{1}{25}$, $\frac{1}{25} a^{9} - \frac{1}{25} a^{7} + \frac{2}{25} a^{6} + \frac{2}{25} a^{5} + \frac{1}{25} a^{4} - \frac{1}{25} a^{2} + \frac{2}{25} a + \frac{2}{25}$, $\frac{1}{25} a^{10} + \frac{2}{25} a^{5} + \frac{1}{25}$, $\frac{1}{25} a^{11} + \frac{2}{25} a^{6} + \frac{1}{25} a$, $\frac{1}{125} a^{12} + \frac{2}{125} a^{11} + \frac{1}{125} a^{10} + \frac{2}{125} a^{7} + \frac{4}{125} a^{6} + \frac{2}{125} a^{5} + \frac{1}{125} a^{2} + \frac{2}{125} a + \frac{1}{125}$, $\frac{1}{125} a^{13} + \frac{2}{125} a^{11} - \frac{2}{125} a^{10} + \frac{2}{125} a^{8} + \frac{4}{125} a^{6} - \frac{4}{125} a^{5} + \frac{1}{125} a^{3} + \frac{2}{125} a - \frac{2}{125}$, $\frac{1}{125} a^{14} - \frac{1}{125} a^{11} - \frac{2}{125} a^{10} + \frac{2}{125} a^{9} - \frac{2}{125} a^{6} - \frac{4}{125} a^{5} + \frac{1}{125} a^{4} - \frac{1}{125} a - \frac{2}{125}$, $\frac{1}{125} a^{15} - \frac{2}{125} a^{10} - \frac{7}{125} a^{5} - \frac{4}{125}$, $\frac{1}{625} a^{16} + \frac{1}{625} a^{15} + \frac{3}{625} a^{11} + \frac{3}{625} a^{10} + \frac{3}{625} a^{6} + \frac{3}{625} a^{5} + \frac{1}{625} a + \frac{1}{625}$, $\frac{1}{1875} a^{17} - \frac{1}{1875} a^{16} - \frac{7}{1875} a^{15} - \frac{1}{375} a^{14} + \frac{1}{625} a^{12} - \frac{23}{1875} a^{11} - \frac{12}{625} a^{10} + \frac{1}{125} a^{9} - \frac{1}{75} a^{8} - \frac{97}{1875} a^{7} + \frac{182}{1875} a^{6} + \frac{33}{625} a^{5} - \frac{7}{125} a^{4} + \frac{4}{75} a^{3} - \frac{224}{1875} a^{2} + \frac{329}{1875} a + \frac{1}{625}$, $\frac{1}{1875} a^{18} + \frac{1}{1875} a^{16} - \frac{1}{625} a^{15} - \frac{1}{375} a^{14} + \frac{1}{625} a^{13} - \frac{1}{375} a^{12} - \frac{2}{1875} a^{11} + \frac{7}{625} a^{10} - \frac{2}{375} a^{9} + \frac{28}{1875} a^{8} - \frac{37}{375} a^{7} + \frac{68}{1875} a^{6} - \frac{58}{625} a^{5} - \frac{1}{375} a^{4} + \frac{26}{1875} a^{3} - \frac{12}{125} a^{2} + \frac{71}{1875} a - \frac{66}{625}$, $\frac{1}{8610578649375} a^{19} + \frac{1739845057}{8610578649375} a^{18} - \frac{65163747}{574038576625} a^{17} + \frac{875374973}{8610578649375} a^{16} - \frac{4116849166}{8610578649375} a^{15} - \frac{1754764584}{2870192883125} a^{14} + \frac{5502122821}{8610578649375} a^{13} - \frac{98084378}{68884629195} a^{12} + \frac{25596914393}{2870192883125} a^{11} + \frac{81376782677}{8610578649375} a^{10} - \frac{5070765419}{2870192883125} a^{9} - \frac{40976127643}{2870192883125} a^{8} - \frac{36122680042}{1722115729875} a^{7} + \frac{129587569288}{2870192883125} a^{6} - \frac{57897843173}{8610578649375} a^{5} + \frac{23791295582}{2870192883125} a^{4} - \frac{2051673443693}{8610578649375} a^{3} + \frac{705076182392}{1722115729875} a^{2} + \frac{162902893886}{2870192883125} a + \frac{662388145578}{2870192883125}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 97728351245.6 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 100 conjugacy class representatives for t20n426 are not computed |
| Character table for t20n426 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.160801.1, 10.10.80803005003125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | R | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $97$ | 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 401 | Data not computed | ||||||