Normalized defining polynomial
\( x^{20} - 10 x^{19} + 11 x^{18} + 186 x^{17} - 651 x^{16} - 300 x^{15} + 4740 x^{14} - 6714 x^{13} - 3027 x^{12} + 11792 x^{11} + 961 x^{10} - 16460 x^{9} + 7140 x^{8} + 8298 x^{7} - 6774 x^{6} - 360 x^{5} + 1458 x^{4} - 222 x^{3} - 85 x^{2} + 16 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1906977314212584211582086181640625=3^{18}\cdot 5^{14}\cdot 73^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{4} - \frac{1}{3} a$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{5} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{6} + \frac{1}{6} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{6} a - \frac{1}{6}$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{6} a^{5} - \frac{1}{3} a^{4} - \frac{1}{2} a^{2} - \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{18} a^{12} + \frac{1}{18} a^{9} - \frac{1}{6} a^{8} - \frac{1}{18} a^{6} - \frac{1}{3} a^{5} + \frac{5}{18} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a - \frac{1}{9}$, $\frac{1}{18} a^{13} + \frac{1}{18} a^{10} - \frac{1}{6} a^{9} - \frac{1}{18} a^{7} + \frac{5}{18} a^{4} + \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{9} a - \frac{1}{3}$, $\frac{1}{18} a^{14} + \frac{1}{18} a^{11} - \frac{1}{6} a^{9} + \frac{1}{9} a^{8} - \frac{1}{6} a^{6} + \frac{1}{9} a^{5} - \frac{1}{2} a^{3} + \frac{2}{9} a^{2} - \frac{1}{2} a - \frac{1}{6}$, $\frac{1}{18} a^{15} - \frac{1}{9} a^{9} - \frac{1}{6} a^{7} - \frac{1}{2} a^{5} + \frac{1}{6} a^{4} - \frac{1}{18} a^{3} - \frac{1}{2} a^{2} + \frac{1}{6} a - \frac{1}{18}$, $\frac{1}{54} a^{16} + \frac{1}{54} a^{15} - \frac{1}{54} a^{14} - \frac{1}{54} a^{12} - \frac{1}{54} a^{11} + \frac{2}{27} a^{10} - \frac{1}{9} a^{9} + \frac{2}{27} a^{8} + \frac{1}{18} a^{7} + \frac{7}{54} a^{6} - \frac{4}{27} a^{5} - \frac{8}{27} a^{4} - \frac{1}{9} a^{3} + \frac{13}{27} a^{2} + \frac{13}{27} a - \frac{10}{27}$, $\frac{1}{54} a^{17} + \frac{1}{54} a^{15} + \frac{1}{54} a^{14} - \frac{1}{54} a^{13} - \frac{2}{27} a^{11} - \frac{1}{54} a^{10} - \frac{5}{54} a^{9} - \frac{1}{54} a^{8} + \frac{2}{27} a^{7} - \frac{1}{9} a^{6} - \frac{17}{54} a^{5} + \frac{19}{54} a^{4} + \frac{11}{54} a^{3} - \frac{1}{3} a^{2} + \frac{13}{27} a + \frac{17}{54}$, $\frac{1}{51246} a^{18} - \frac{1}{5694} a^{17} - \frac{10}{25623} a^{16} + \frac{14}{1971} a^{15} - \frac{398}{25623} a^{14} + \frac{445}{17082} a^{13} - \frac{1087}{51246} a^{12} + \frac{2687}{51246} a^{11} - \frac{3947}{51246} a^{10} + \frac{463}{25623} a^{9} - \frac{1666}{25623} a^{8} - \frac{17}{2847} a^{7} + \frac{4007}{25623} a^{6} - \frac{5560}{25623} a^{5} + \frac{15527}{51246} a^{4} - \frac{35}{78} a^{3} + \frac{22163}{51246} a^{2} - \frac{2279}{25623} a - \frac{2164}{8541}$, $\frac{1}{5483322} a^{19} + \frac{22}{2741661} a^{18} + \frac{2365}{1827774} a^{17} + \frac{1345}{203086} a^{16} + \frac{2592}{101543} a^{15} - \frac{3904}{304629} a^{14} - \frac{3889}{913887} a^{13} + \frac{24061}{913887} a^{12} - \frac{56021}{1827774} a^{11} - \frac{170305}{5483322} a^{10} + \frac{654055}{5483322} a^{9} + \frac{379}{5694} a^{8} - \frac{73175}{913887} a^{7} - \frac{128455}{913887} a^{6} + \frac{17743}{70299} a^{5} - \frac{142147}{609258} a^{4} - \frac{7993}{23433} a^{3} - \frac{352085}{913887} a^{2} - \frac{956705}{2741661} a + \frac{13159}{5483322}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9408087488.31 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3840 |
| The 48 conjugacy class representatives for t20n277 |
| Character table for t20n277 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.10791225.1, 10.10.582252685003125.1, 10.8.8733790275046875.1, 10.8.43668951375234375.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.6.3 | $x^{6} + 3 x^{4} + 9$ | $3$ | $2$ | $6$ | $D_{6}$ | $[3/2]_{2}^{2}$ |
| 3.6.6.3 | $x^{6} + 3 x^{4} + 9$ | $3$ | $2$ | $6$ | $D_{6}$ | $[3/2]_{2}^{2}$ | |
| 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $73$ | 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.6.4.2 | $x^{6} - 73 x^{3} + 58619$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 73.6.4.2 | $x^{6} - 73 x^{3} + 58619$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |