Normalized defining polynomial
\( x^{20} - 2 x^{19} - 26 x^{18} + 90 x^{17} + 105 x^{16} - 908 x^{15} + 976 x^{14} + 2760 x^{13} - 8147 x^{12} + 3102 x^{11} + 17040 x^{10} - 28072 x^{9} + 2236 x^{8} + 36118 x^{7} - 31670 x^{6} - 5428 x^{5} + 17475 x^{4} - 4286 x^{3} - 2176 x^{2} + 844 x - 43 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18655986742119776375747379200000=2^{30}\cdot 5^{5}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{1732733963003294340253683913295441} a^{19} + \frac{437943763860590993315011150023215}{1732733963003294340253683913295441} a^{18} - \frac{299383484717869661120781998821873}{1732733963003294340253683913295441} a^{17} + \frac{203643596772865963241436828658386}{1732733963003294340253683913295441} a^{16} + \frac{683520002149020648917768910350109}{1732733963003294340253683913295441} a^{15} - \frac{635091487617286111130917171058341}{1732733963003294340253683913295441} a^{14} - \frac{280251780822054295993672097231121}{1732733963003294340253683913295441} a^{13} + \frac{215498654294844166580841459451586}{1732733963003294340253683913295441} a^{12} + \frac{354607369741327114597497132420826}{1732733963003294340253683913295441} a^{11} + \frac{253855902907396749385428446919903}{1732733963003294340253683913295441} a^{10} + \frac{55900353130075150003723748934566}{1732733963003294340253683913295441} a^{9} - \frac{439203634480749936401090392467612}{1732733963003294340253683913295441} a^{8} + \frac{680496814641769961016631232305564}{1732733963003294340253683913295441} a^{7} - \frac{200648984448604546103532643549400}{1732733963003294340253683913295441} a^{6} - \frac{368358348308730288521071982616592}{1732733963003294340253683913295441} a^{5} + \frac{526748316281686524597130447584625}{1732733963003294340253683913295441} a^{4} - \frac{347280599828539178337823589547019}{1732733963003294340253683913295441} a^{3} + \frac{8130113611645737754897926897169}{40296138674495217215201951471987} a^{2} + \frac{810981504978399890133234900514753}{1732733963003294340253683913295441} a + \frac{723122142294890672375396443255}{40296138674495217215201951471987}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 679541499.106 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 640 |
| The 40 conjugacy class representatives for t20n130 |
| Character table for t20n130 is not computed |
Intermediate fields
| \(\Q(\sqrt{11}) \), \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{44})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | R | $20$ | $20$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{10}$ | $20$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.5.0.1 | $x^{5} - x + 2$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 5.5.0.1 | $x^{5} - x + 2$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |