Properties

Label 20.16.1853001347...0625.1
Degree $20$
Signature $[16, 2]$
Discriminant $5^{10}\cdot 61^{4}\cdot 397^{4}\cdot 551689$
Root discriminant $32.61$
Ramified primes $5, 61, 397, 551689$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T887

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 2, 24, -39, -149, 339, 255, -1076, 266, 1354, -1185, -374, 1085, -512, -214, 348, -120, -30, 35, -10, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 10*x^19 + 35*x^18 - 30*x^17 - 120*x^16 + 348*x^15 - 214*x^14 - 512*x^13 + 1085*x^12 - 374*x^11 - 1185*x^10 + 1354*x^9 + 266*x^8 - 1076*x^7 + 255*x^6 + 339*x^5 - 149*x^4 - 39*x^3 + 24*x^2 + 2*x - 1)
 
gp: K = bnfinit(x^20 - 10*x^19 + 35*x^18 - 30*x^17 - 120*x^16 + 348*x^15 - 214*x^14 - 512*x^13 + 1085*x^12 - 374*x^11 - 1185*x^10 + 1354*x^9 + 266*x^8 - 1076*x^7 + 255*x^6 + 339*x^5 - 149*x^4 - 39*x^3 + 24*x^2 + 2*x - 1, 1)
 

Normalized defining polynomial

\( x^{20} - 10 x^{19} + 35 x^{18} - 30 x^{17} - 120 x^{16} + 348 x^{15} - 214 x^{14} - 512 x^{13} + 1085 x^{12} - 374 x^{11} - 1185 x^{10} + 1354 x^{9} + 266 x^{8} - 1076 x^{7} + 255 x^{6} + 339 x^{5} - 149 x^{4} - 39 x^{3} + 24 x^{2} + 2 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[16, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1853001347776081251704775390625=5^{10}\cdot 61^{4}\cdot 397^{4}\cdot 551689\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $32.61$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 61, 397, 551689$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{107} a^{18} - \frac{9}{107} a^{17} + \frac{9}{107} a^{16} + \frac{25}{107} a^{15} - \frac{34}{107} a^{14} - \frac{4}{107} a^{13} + \frac{39}{107} a^{12} + \frac{23}{107} a^{11} + \frac{17}{107} a^{10} + \frac{1}{107} a^{9} + \frac{25}{107} a^{8} - \frac{29}{107} a^{7} + \frac{26}{107} a^{6} - \frac{22}{107} a^{5} + \frac{5}{107} a^{4} - \frac{31}{107} a^{3} - \frac{51}{107} a^{2} + \frac{9}{107} a + \frac{44}{107}$, $\frac{1}{107} a^{19} + \frac{35}{107} a^{17} - \frac{1}{107} a^{16} - \frac{23}{107} a^{15} + \frac{11}{107} a^{14} + \frac{3}{107} a^{13} + \frac{53}{107} a^{12} + \frac{10}{107} a^{11} + \frac{47}{107} a^{10} + \frac{34}{107} a^{9} - \frac{18}{107} a^{8} - \frac{21}{107} a^{7} - \frac{2}{107} a^{6} + \frac{21}{107} a^{5} + \frac{14}{107} a^{4} - \frac{9}{107} a^{3} - \frac{22}{107} a^{2} + \frac{18}{107} a - \frac{32}{107}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $17$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 238504514.466 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T887:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 245760
The 201 conjugacy class representatives for t20n887 are not computed
Character table for t20n887 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 5.5.24217.1, 10.10.1832697153125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ R $20$ ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
5Data not computed
$61$$\Q_{61}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{61}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{61}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{61}$$x + 2$$1$$1$$0$Trivial$[\ ]$
61.2.1.1$x^{2} - 61$$2$$1$$1$$C_2$$[\ ]_{2}$
61.2.1.1$x^{2} - 61$$2$$1$$1$$C_2$$[\ ]_{2}$
61.2.1.1$x^{2} - 61$$2$$1$$1$$C_2$$[\ ]_{2}$
61.2.1.1$x^{2} - 61$$2$$1$$1$$C_2$$[\ ]_{2}$
61.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
61.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
397Data not computed
551689Data not computed