Normalized defining polynomial
\( x^{20} - 9 x^{19} - 12 x^{18} + 128 x^{17} + 525 x^{16} + 4236 x^{15} - 39076 x^{14} - 66298 x^{13} + 785766 x^{12} - 405306 x^{11} - 6177196 x^{10} + 10947276 x^{9} + 17250050 x^{8} - 57718272 x^{7} + 2051604 x^{6} + 94957418 x^{5} - 25985931 x^{4} - 67041885 x^{3} + 9187632 x^{2} + 16815772 x + 1862501 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1818109779441283591477572567040000000000=2^{24}\cdot 5^{10}\cdot 13^{4}\cdot 29^{10}\cdot 31^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 29, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{433845403382207196114153008165992692539633635122770911518259619579486733694} a^{19} - \frac{98570733935935596830083181593110166182710480366186827809749282076827448179}{433845403382207196114153008165992692539633635122770911518259619579486733694} a^{18} + \frac{3116811488036537365290216082602104221821979761301200097279302920316608483}{216922701691103598057076504082996346269816817561385455759129809789743366847} a^{17} + \frac{7035037741995278982686384586503073377983689354159436457036282853683263736}{216922701691103598057076504082996346269816817561385455759129809789743366847} a^{16} + \frac{106352599907685309221947737160147529169661823384007693179205513942089774629}{433845403382207196114153008165992692539633635122770911518259619579486733694} a^{15} - \frac{6440287521008297162650152893487389730275344640508589498921188567740911045}{216922701691103598057076504082996346269816817561385455759129809789743366847} a^{14} - \frac{23175767805246291320028880845928623558295408939103749716568453363311570112}{216922701691103598057076504082996346269816817561385455759129809789743366847} a^{13} - \frac{6000203876524895669910329155325262482832357430804988596949252154255825585}{216922701691103598057076504082996346269816817561385455759129809789743366847} a^{12} - \frac{164174036131245117420099986013605009894945236598348946400521982822751104053}{433845403382207196114153008165992692539633635122770911518259619579486733694} a^{11} + \frac{8507444865420473185041152276519338472546441714783896196126542373333527707}{25520317846012188006714882833293687796449037360162994795191742328205101982} a^{10} + \frac{8718445045895992148220055997546285823225468963335610001667727574309731565}{216922701691103598057076504082996346269816817561385455759129809789743366847} a^{9} - \frac{22193357088557647877849225584230036604462702533326119525582057718243651548}{216922701691103598057076504082996346269816817561385455759129809789743366847} a^{8} + \frac{15268613546648370231260811895008315543532527796866687083578685656322081549}{39440491216564290555832091651453881139966694102070082865296329052680612154} a^{7} - \frac{22027923878402860615356474875714788169612401606240113046390478160834080579}{216922701691103598057076504082996346269816817561385455759129809789743366847} a^{6} + \frac{5303926785366416580687641809016333597428802889901319227221963401129282425}{12760158923006094003357441416646843898224518680081497397595871164102550991} a^{5} - \frac{61936755197015679963641921510633262233911196731288443728873571887563708941}{216922701691103598057076504082996346269816817561385455759129809789743366847} a^{4} + \frac{787355471352857444619802036749118776661501780613096295199179225761306044}{216922701691103598057076504082996346269816817561385455759129809789743366847} a^{3} + \frac{2010083196874166455376013607867520773229639846255882681171462889508104877}{19720245608282145277916045825726940569983347051035041432648164526340306077} a^{2} - \frac{2167080275838320824134897193222339626298214092573712428041988801614237794}{216922701691103598057076504082996346269816817561385455759129809789743366847} a - \frac{34185448117006728657859167415812900552581320499923785504035698508438935222}{216922701691103598057076504082996346269816817561385455759129809789743366847}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5714348245800 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 228 conjugacy class representatives for t20n1028 are not computed |
| Character table for t20n1028 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.109268775200000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $13$ | 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 29.6.5.2 | $x^{6} + 58$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |
| 29.10.5.1 | $x^{10} - 1682 x^{6} + 707281 x^{2} - 2481849029$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $31$ | $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 31.3.2.2 | $x^{3} + 217$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.2 | $x^{3} + 217$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.4.0.1 | $x^{4} - 2 x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 31.8.0.1 | $x^{8} - x + 22$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |