Normalized defining polynomial
\( x^{20} - 6 x^{19} - 3 x^{18} + 109 x^{17} - 319 x^{16} - 93 x^{15} + 2796 x^{14} - 5438 x^{13} - 4145 x^{12} + 25256 x^{11} - 16741 x^{10} - 35263 x^{9} + 51562 x^{8} + 4969 x^{7} - 42730 x^{6} + 17494 x^{5} + 7806 x^{4} - 5769 x^{3} + 286 x^{2} + 236 x - 7 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17948300332081101479956111978679296=2^{10}\cdot 19^{9}\cdot 293^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 19, 293$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{7} a^{17} + \frac{3}{7} a^{16} - \frac{2}{7} a^{15} - \frac{3}{7} a^{14} + \frac{1}{7} a^{13} - \frac{2}{7} a^{12} + \frac{2}{7} a^{10} - \frac{3}{7} a^{8} - \frac{3}{7} a^{6} - \frac{3}{7} a^{3} + \frac{2}{7} a^{2} - \frac{1}{7} a$, $\frac{1}{7} a^{18} + \frac{3}{7} a^{16} + \frac{3}{7} a^{15} + \frac{3}{7} a^{14} + \frac{2}{7} a^{13} - \frac{1}{7} a^{12} + \frac{2}{7} a^{11} + \frac{1}{7} a^{10} - \frac{3}{7} a^{9} + \frac{2}{7} a^{8} - \frac{3}{7} a^{7} + \frac{2}{7} a^{6} - \frac{3}{7} a^{4} - \frac{3}{7} a^{3} + \frac{3}{7} a$, $\frac{1}{197469001953511787712074376011} a^{19} - \frac{10448904377548104790323498437}{197469001953511787712074376011} a^{18} - \frac{7564279591399308993982527752}{197469001953511787712074376011} a^{17} + \frac{41784556974340827577557935292}{197469001953511787712074376011} a^{16} - \frac{44872175543182055975474022284}{197469001953511787712074376011} a^{15} - \frac{86403525522217243287978504541}{197469001953511787712074376011} a^{14} + \frac{93858338824352127653135738208}{197469001953511787712074376011} a^{13} + \frac{6903280108899131432467741007}{28209857421930255387439196573} a^{12} + \frac{2326405121196492544090617121}{197469001953511787712074376011} a^{11} + \frac{81272626193279364600326142670}{197469001953511787712074376011} a^{10} + \frac{5953645346500730471647011731}{197469001953511787712074376011} a^{9} - \frac{11380652503349625671919318973}{197469001953511787712074376011} a^{8} - \frac{80377396302463808680061469410}{197469001953511787712074376011} a^{7} - \frac{79127325583572808042754962138}{197469001953511787712074376011} a^{6} + \frac{21532442524886360294487235196}{197469001953511787712074376011} a^{5} + \frac{14619373350069952400682397357}{197469001953511787712074376011} a^{4} + \frac{96432444889068939611938155057}{197469001953511787712074376011} a^{3} + \frac{94773202690983596646536589466}{197469001953511787712074376011} a^{2} + \frac{41447944955798868531777606978}{197469001953511787712074376011} a - \frac{2317763271126048836177682819}{28209857421930255387439196573}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26847699421.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 104 conjugacy class representatives for t20n693 are not computed |
| Character table for t20n693 is not computed |
Intermediate fields
| 10.10.960472390437121.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.14 | $x^{10} + 5 x^{8} - 50 x^{6} - 58 x^{4} + 49 x^{2} + 21$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.3.1 | $x^{4} + 76$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.8.4.1 | $x^{8} + 7220 x^{4} - 27436 x^{2} + 13032100$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 293 | Data not computed | ||||||