Normalized defining polynomial
\( x^{20} - 56 x^{18} + 1239 x^{16} - 13660 x^{14} + 76332 x^{12} - 170366 x^{10} - 218299 x^{8} + 1811192 x^{6} - 2906660 x^{4} + 978238 x^{2} + 571787 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1741167538834544763439794528727334912=2^{36}\cdot 83^{7}\cdot 983^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 83, 983$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{83} a^{16} + \frac{27}{83} a^{14} - \frac{6}{83} a^{12} + \frac{35}{83} a^{10} - \frac{28}{83} a^{8} + \frac{33}{83} a^{6} - \frac{9}{83} a^{4} - \frac{34}{83} a^{2}$, $\frac{1}{83} a^{17} + \frac{27}{83} a^{15} - \frac{6}{83} a^{13} + \frac{35}{83} a^{11} - \frac{28}{83} a^{9} + \frac{33}{83} a^{7} - \frac{9}{83} a^{5} - \frac{34}{83} a^{3}$, $\frac{1}{3950161593711958840012502} a^{18} - \frac{12077918655900307153211}{3950161593711958840012502} a^{16} + \frac{254590359862305783057511}{1975080796855979420006251} a^{14} - \frac{335963403451288440886834}{1975080796855979420006251} a^{12} + \frac{974912788068280644229604}{1975080796855979420006251} a^{10} + \frac{326839818466700470256829}{1975080796855979420006251} a^{8} + \frac{595045202828847127300297}{3950161593711958840012502} a^{6} - \frac{1676369624710020730245563}{3950161593711958840012502} a^{4} + \frac{19770008345226779922645}{47592308357975407710994} a^{2} - \frac{236301044605527389913}{573401305517775996518}$, $\frac{1}{3950161593711958840012502} a^{19} - \frac{12077918655900307153211}{3950161593711958840012502} a^{17} + \frac{254590359862305783057511}{1975080796855979420006251} a^{15} - \frac{335963403451288440886834}{1975080796855979420006251} a^{13} + \frac{974912788068280644229604}{1975080796855979420006251} a^{11} + \frac{326839818466700470256829}{1975080796855979420006251} a^{9} + \frac{595045202828847127300297}{3950161593711958840012502} a^{7} - \frac{1676369624710020730245563}{3950161593711958840012502} a^{5} + \frac{19770008345226779922645}{47592308357975407710994} a^{3} - \frac{236301044605527389913}{573401305517775996518} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 217264510519 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for t20n807 are not computed |
| Character table for t20n807 is not computed |
Intermediate fields
| 5.5.81589.1, 10.10.1704131819776.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | $16{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | $16{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.8.0.1}{8} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.8.0.1}{8} }$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $16{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.8.0.1}{8} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 83 | Data not computed | ||||||
| 983 | Data not computed | ||||||