Normalized defining polynomial
\( x^{20} - 10 x^{19} - 20 x^{18} + 444 x^{17} - 976 x^{16} - 1086 x^{15} + 8874 x^{14} - 96892 x^{13} + 423991 x^{12} + 103412 x^{11} - 4839034 x^{10} + 10102328 x^{9} + 4472351 x^{8} - 42902680 x^{7} + 55364452 x^{6} - 8823476 x^{5} - 36540381 x^{4} + 26209548 x^{3} + 1106448 x^{2} - 5759886 x + 1170971 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1573698888766283323386134528000000000000000=2^{30}\cdot 5^{15}\cdot 6029^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $128.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 6029$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{2}{5} a^{11} - \frac{1}{5} a^{10} + \frac{2}{5} a^{9} - \frac{2}{5} a^{8} + \frac{1}{5} a^{7} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} + \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{14} + \frac{2}{5} a^{10} + \frac{2}{5} a^{9} + \frac{1}{5} a^{8} + \frac{1}{5} a^{7} - \frac{2}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2} - \frac{2}{5} a$, $\frac{1}{5} a^{15} + \frac{2}{5} a^{11} + \frac{2}{5} a^{10} + \frac{1}{5} a^{9} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2}$, $\frac{1}{5} a^{16} + \frac{1}{5} a^{11} - \frac{2}{5} a^{10} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} - \frac{2}{5} a^{6} + \frac{2}{5} a^{4} + \frac{2}{5} a^{3} - \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{17} - \frac{2}{5} a^{10} + \frac{2}{5} a^{8} + \frac{2}{5} a^{7} + \frac{1}{5} a^{6} - \frac{1}{5} a^{5} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{18} - \frac{2}{5} a^{11} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} + \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{353486650074579074803163089589955435054379052645959925} a^{19} - \frac{5403065838730123996965193851798698542744951290108196}{353486650074579074803163089589955435054379052645959925} a^{18} - \frac{21447300653131496839035331100419608396315860888470919}{353486650074579074803163089589955435054379052645959925} a^{17} + \frac{8294210526315378381887416263878755426607578800138493}{353486650074579074803163089589955435054379052645959925} a^{16} - \frac{11543287716585402680216410147619298406778572735882709}{353486650074579074803163089589955435054379052645959925} a^{15} - \frac{945109868396351757991328157646350527415680749966012}{353486650074579074803163089589955435054379052645959925} a^{14} - \frac{783136707858936354912707995086189732449575738573664}{353486650074579074803163089589955435054379052645959925} a^{13} - \frac{14462731662372381243487192635484228211312630336776688}{353486650074579074803163089589955435054379052645959925} a^{12} - \frac{66877594654635260329817725824831510595026089649533386}{353486650074579074803163089589955435054379052645959925} a^{11} + \frac{23451377523091244892039197922512945538974745477636573}{353486650074579074803163089589955435054379052645959925} a^{10} - \frac{56610740929046226778375082790308132778535150565141292}{353486650074579074803163089589955435054379052645959925} a^{9} + \frac{1310015992239002313950012595072065991534821622880316}{70697330014915814960632617917991087010875810529191985} a^{8} + \frac{76591248424688913566194992418408102372960303853396216}{353486650074579074803163089589955435054379052645959925} a^{7} + \frac{72378139537446963854239161169228211899756601052931729}{353486650074579074803163089589955435054379052645959925} a^{6} + \frac{159430966302764136772802357677133270329646952320091408}{353486650074579074803163089589955435054379052645959925} a^{5} - \frac{73997995698884830184352127696581800827453578427149829}{353486650074579074803163089589955435054379052645959925} a^{4} - \frac{9150472768934090426337569799583178028393041791058552}{353486650074579074803163089589955435054379052645959925} a^{3} + \frac{21574120243020698118347885780209314306468267747580917}{70697330014915814960632617917991087010875810529191985} a^{2} + \frac{70729916302746235224219786178877841797368458502718783}{353486650074579074803163089589955435054379052645959925} a + \frac{93204999225161649192175582792007832018537425250604301}{353486650074579074803163089589955435054379052645959925}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 191086773151000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 108 conjugacy class representatives for t20n792 are not computed |
| Character table for t20n792 is not computed |
Intermediate fields
| 5.5.753625.1, 10.10.17531772991120000000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 6029 | Data not computed | ||||||