Normalized defining polynomial
\( x^{20} - 2 x^{19} - 91 x^{18} + 333 x^{17} + 1633 x^{16} - 10426 x^{15} + 23238 x^{14} + 60961 x^{13} - 691752 x^{12} - 47119 x^{11} + 8648382 x^{10} - 6567940 x^{9} - 44331309 x^{8} + 65430409 x^{7} + 59962305 x^{6} - 173123757 x^{5} + 84377645 x^{4} + 41764421 x^{3} - 42339548 x^{2} + 4785950 x + 2050157 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1563800283933611000253754795880833917433369=67^{6}\cdot 401^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $128.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $67, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{333} a^{18} - \frac{38}{333} a^{17} + \frac{34}{333} a^{16} + \frac{56}{333} a^{15} - \frac{7}{111} a^{14} - \frac{8}{111} a^{13} - \frac{26}{111} a^{12} + \frac{28}{333} a^{11} - \frac{23}{111} a^{10} + \frac{4}{9} a^{9} - \frac{12}{37} a^{8} - \frac{104}{333} a^{7} + \frac{12}{37} a^{6} + \frac{9}{37} a^{5} + \frac{10}{111} a^{4} + \frac{9}{37} a^{3} - \frac{139}{333} a^{2} + \frac{119}{333} a + \frac{65}{333}$, $\frac{1}{317044607578464939077512540313646103510704573452913933004337880005555624691} a^{19} - \frac{151808117806988129572777687124068137957414630813254520640024201317341278}{317044607578464939077512540313646103510704573452913933004337880005555624691} a^{18} + \frac{98536470395675671022307863183413663140395262912297578097885685987792957649}{317044607578464939077512540313646103510704573452913933004337880005555624691} a^{17} + \frac{52763359125361115328886806302285327752457516705607616102145226532965969703}{105681535859488313025837513437882034503568191150971311001445960001851874897} a^{16} - \frac{14994307626397555631242821732907486494307616449124171624222544393611460589}{317044607578464939077512540313646103510704573452913933004337880005555624691} a^{15} + \frac{14181892578962869293807668776059349607468145894804464171389161623461839500}{35227178619829437675279171145960678167856063716990437000481986667283958299} a^{14} + \frac{25099083346123385520962098806039608417143360640063817970853770332947189396}{105681535859488313025837513437882034503568191150971311001445960001851874897} a^{13} - \frac{29288760550540527827743534290352605099898714528517755797074220009710143178}{317044607578464939077512540313646103510704573452913933004337880005555624691} a^{12} + \frac{79160676947470329354724930969365999727049422262193338801792107612859950150}{317044607578464939077512540313646103510704573452913933004337880005555624691} a^{11} - \frac{95118760338634626161984740516933587790199101433932276186578539678683697180}{317044607578464939077512540313646103510704573452913933004337880005555624691} a^{10} - \frac{17778246723237399660460491827027891712416602735290030052630567326885925577}{317044607578464939077512540313646103510704573452913933004337880005555624691} a^{9} - \frac{32782184747228474078539727088647030421341672127075405543521315918677423721}{317044607578464939077512540313646103510704573452913933004337880005555624691} a^{8} - \frac{130679579504505203068555369972498481665255315082926492499597212706915364167}{317044607578464939077512540313646103510704573452913933004337880005555624691} a^{7} - \frac{13044516184937957999668507075266722349635096260286514570079960018446517478}{35227178619829437675279171145960678167856063716990437000481986667283958299} a^{6} - \frac{23101080399298087398927641304106786702184496741639109175898359096580640139}{105681535859488313025837513437882034503568191150971311001445960001851874897} a^{5} - \frac{24458661519359633203702618144777668429227496648331738093851694910300934356}{105681535859488313025837513437882034503568191150971311001445960001851874897} a^{4} - \frac{5538927157127153680584456813115558541635271747738703954317343473103575731}{317044607578464939077512540313646103510704573452913933004337880005555624691} a^{3} - \frac{23418519618272260965490891654410900009937070608861322414496487181909073872}{317044607578464939077512540313646103510704573452913933004337880005555624691} a^{2} - \frac{4235507014396950450935621649803485282318848058052463914696727969500605766}{8568773177796349704797636224693137932721745228457133324441564324474476343} a - \frac{25145432970371511115031341354716342715825205592272408903691071156861486290}{317044607578464939077512540313646103510704573452913933004337880005555624691}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 156397184693000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 44 conjugacy class representatives for t20n354 |
| Character table for t20n354 is not computed |
Intermediate fields
| 5.5.160801.1, 10.10.46544832151382489.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $67$ | 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.4.2.2 | $x^{4} - 67 x^{2} + 53868$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 67.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 67.8.4.1 | $x^{8} + 17956 x^{4} - 300763 x^{2} + 80604484$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 401 | Data not computed | ||||||