Normalized defining polynomial
\( x^{20} - 4 x^{19} - 33 x^{18} + 154 x^{17} + 359 x^{16} - 2072 x^{15} - 1485 x^{14} + 12257 x^{13} + 1054 x^{12} - 31939 x^{11} + 14181 x^{10} + 19760 x^{9} - 71590 x^{8} + 47927 x^{7} + 152984 x^{6} - 48488 x^{5} - 128668 x^{4} - 21189 x^{3} + 14432 x^{2} + 1661 x - 461 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1554923809853487093461057149075456=2^{20}\cdot 33769^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 33769$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{11} a^{18} + \frac{5}{11} a^{17} - \frac{5}{11} a^{16} + \frac{2}{11} a^{15} - \frac{5}{11} a^{13} - \frac{1}{11} a^{12} + \frac{2}{11} a^{11} + \frac{4}{11} a^{9} + \frac{5}{11} a^{8} + \frac{3}{11} a^{7} - \frac{5}{11} a^{6} + \frac{3}{11} a^{5} - \frac{2}{11} a^{4} - \frac{3}{11} a^{3} - \frac{5}{11} a^{2} + \frac{3}{11} a + \frac{2}{11}$, $\frac{1}{574800376746952969980742778319054727388657} a^{19} - \frac{10897776026332623749712379816563993324745}{574800376746952969980742778319054727388657} a^{18} + \frac{266386587456472714196366482387565495872560}{574800376746952969980742778319054727388657} a^{17} + \frac{85878628904552718086421686843188676641248}{574800376746952969980742778319054727388657} a^{16} - \frac{243598169817541168497275604299249502220801}{574800376746952969980742778319054727388657} a^{15} - \frac{71590808477039175459168436052785357581782}{574800376746952969980742778319054727388657} a^{14} - \frac{231520613769578299301164290842746818486643}{574800376746952969980742778319054727388657} a^{13} + \frac{277975795157902891755103768811336591110418}{574800376746952969980742778319054727388657} a^{12} - \frac{245451365488872008825486439730193127034377}{574800376746952969980742778319054727388657} a^{11} + \frac{50241655664533626017795704802314055266009}{574800376746952969980742778319054727388657} a^{10} - \frac{157593638764283019088209798309029676040122}{574800376746952969980742778319054727388657} a^{9} + \frac{6649838656757536473501983732047520858597}{574800376746952969980742778319054727388657} a^{8} - \frac{6490452017455677956548750851876920799150}{574800376746952969980742778319054727388657} a^{7} - \frac{7306417817073981502072947882983187349432}{574800376746952969980742778319054727388657} a^{6} + \frac{177634718566399197500943583044487631335894}{574800376746952969980742778319054727388657} a^{5} - \frac{171961793890882021695153594837733861375840}{574800376746952969980742778319054727388657} a^{4} - \frac{59396414615405845403712649005045694811621}{574800376746952969980742778319054727388657} a^{3} + \frac{219821340299918534233786590548370211203903}{574800376746952969980742778319054727388657} a^{2} + \frac{258235063604061168424850979991044751992629}{574800376746952969980742778319054727388657} a + \frac{58257767683847516043504669681211630431941}{574800376746952969980742778319054727388657}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6841637594.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 126 conjugacy class representatives for t20n664 are not computed |
| Character table for t20n664 is not computed |
Intermediate fields
| 5.5.135076.1, 10.8.1167713649664.1, 10.8.39432522235503616.1, 10.10.616133159929744.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.12.20.52 | $x^{12} - 5 x^{8} + 4 x^{6} + 3 x^{4} + 8 x^{2} - 7$ | $6$ | $2$ | $20$ | $C_2\times S_4$ | $[2, 8/3, 8/3]_{3}^{2}$ | |
| 33769 | Data not computed | ||||||