Normalized defining polynomial
\( x^{20} - 3 x^{19} - 38 x^{18} + 148 x^{17} + 394 x^{16} - 2324 x^{15} - 219 x^{14} + 15540 x^{13} - 18624 x^{12} - 39697 x^{11} + 113953 x^{10} - 28380 x^{9} - 262419 x^{8} + 332408 x^{7} + 208344 x^{6} - 598148 x^{5} + 55887 x^{4} + 432233 x^{3} - 143919 x^{2} - 112287 x + 47569 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1465621300755332525247833251953125=5^{15}\cdot 6029^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 6029$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{691333053630997285596160257737558316150211897} a^{19} - \frac{123070106344231911620815606009340727984402459}{691333053630997285596160257737558316150211897} a^{18} - \frac{98026159404204401485349432829531345690944780}{691333053630997285596160257737558316150211897} a^{17} + \frac{135054588849121403584192059791280791200098882}{691333053630997285596160257737558316150211897} a^{16} - \frac{77128511416198130556578856636224436915220653}{691333053630997285596160257737558316150211897} a^{15} + \frac{146447385484657643907047617242302391872208196}{691333053630997285596160257737558316150211897} a^{14} - \frac{340273887573182575822021812057408720125994277}{691333053630997285596160257737558316150211897} a^{13} + \frac{332516987947408163705171460199044669473981117}{691333053630997285596160257737558316150211897} a^{12} + \frac{303394470982841103473624775794772098259563080}{691333053630997285596160257737558316150211897} a^{11} - \frac{79504409069146362586550917785405848501525574}{691333053630997285596160257737558316150211897} a^{10} + \frac{22993850331767289540985073302148817144093168}{691333053630997285596160257737558316150211897} a^{9} - \frac{225188088126140091720439933468455615458780636}{691333053630997285596160257737558316150211897} a^{8} + \frac{337639032596262484863988208066711099835390453}{691333053630997285596160257737558316150211897} a^{7} - \frac{256373813263751922564197204215699413206982715}{691333053630997285596160257737558316150211897} a^{6} + \frac{298046963216151741621551684579781016440572417}{691333053630997285596160257737558316150211897} a^{5} - \frac{130525864544276508999579214681829175746612681}{691333053630997285596160257737558316150211897} a^{4} + \frac{194085233314225047614686514790638017285492405}{691333053630997285596160257737558316150211897} a^{3} - \frac{294897365051622122092745223000264539380040349}{691333053630997285596160257737558316150211897} a^{2} + \frac{57526986802460250660012283501721709278357083}{691333053630997285596160257737558316150211897} a - \frac{75579125254605365650900194669019163224914786}{691333053630997285596160257737558316150211897}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5551914929.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for t20n802 are not computed |
| Character table for t20n802 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.753625.1, 10.10.2839753203125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 6029 | Data not computed | ||||||