Properties

Label 20.16.1220104785...0000.1
Degree $20$
Signature $[16, 2]$
Discriminant $2^{20}\cdot 5^{10}\cdot 19^{5}\cdot 3821^{2}\cdot 5741^{2}$
Root discriminant $50.62$
Ramified primes $2, 5, 19, 3821, 5741$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T781

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![6859, 0, -68951, 0, 44802, 0, 56690, 0, -51614, 0, -1660, 0, 12699, 0, -4561, 0, 667, 0, -43, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 43*x^18 + 667*x^16 - 4561*x^14 + 12699*x^12 - 1660*x^10 - 51614*x^8 + 56690*x^6 + 44802*x^4 - 68951*x^2 + 6859)
 
gp: K = bnfinit(x^20 - 43*x^18 + 667*x^16 - 4561*x^14 + 12699*x^12 - 1660*x^10 - 51614*x^8 + 56690*x^6 + 44802*x^4 - 68951*x^2 + 6859, 1)
 

Normalized defining polynomial

\( x^{20} - 43 x^{18} + 667 x^{16} - 4561 x^{14} + 12699 x^{12} - 1660 x^{10} - 51614 x^{8} + 56690 x^{6} + 44802 x^{4} - 68951 x^{2} + 6859 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[16, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(12201047854910721083176960000000000=2^{20}\cdot 5^{10}\cdot 19^{5}\cdot 3821^{2}\cdot 5741^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $50.62$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 19, 3821, 5741$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{19} a^{16} - \frac{5}{19} a^{14} + \frac{2}{19} a^{12} - \frac{1}{19} a^{10} + \frac{7}{19} a^{8} - \frac{7}{19} a^{6} + \frac{9}{19} a^{4} - \frac{6}{19} a^{2}$, $\frac{1}{19} a^{17} - \frac{5}{19} a^{15} + \frac{2}{19} a^{13} - \frac{1}{19} a^{11} + \frac{7}{19} a^{9} - \frac{7}{19} a^{7} + \frac{9}{19} a^{5} - \frac{6}{19} a^{3}$, $\frac{1}{529664014490705341697} a^{18} - \frac{9870615369496250689}{529664014490705341697} a^{16} + \frac{191644258252422350242}{529664014490705341697} a^{14} + \frac{243249478978616560463}{529664014490705341697} a^{12} + \frac{66746586752964435639}{529664014490705341697} a^{10} - \frac{42991343843813085428}{529664014490705341697} a^{8} + \frac{236600384399717640734}{529664014490705341697} a^{6} - \frac{232973983060146494036}{529664014490705341697} a^{4} + \frac{7050415255648350565}{27877053394247649563} a^{2} - \frac{500971798747267308}{1467213336539349977}$, $\frac{1}{529664014490705341697} a^{19} - \frac{9870615369496250689}{529664014490705341697} a^{17} + \frac{191644258252422350242}{529664014490705341697} a^{15} + \frac{243249478978616560463}{529664014490705341697} a^{13} + \frac{66746586752964435639}{529664014490705341697} a^{11} - \frac{42991343843813085428}{529664014490705341697} a^{9} + \frac{236600384399717640734}{529664014490705341697} a^{7} - \frac{232973983060146494036}{529664014490705341697} a^{5} + \frac{7050415255648350565}{27877053394247649563} a^{3} - \frac{500971798747267308}{1467213336539349977} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $17$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 22765271882.2 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T781:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 115200
The 119 conjugacy class representatives for t20n781 are not computed
Character table for t20n781 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.7600.1, 10.8.1302471434375.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 24 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ $20$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ R ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ $20$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
5Data not computed
$19$$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
19.3.0.1$x^{3} - x + 4$$1$$3$$0$$C_3$$[\ ]^{3}$
19.3.0.1$x^{3} - x + 4$$1$$3$$0$$C_3$$[\ ]^{3}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
19.6.3.1$x^{6} - 38 x^{4} + 361 x^{2} - 109744$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
3821Data not computed
5741Data not computed