Normalized defining polynomial
\( x^{20} - 7 x^{19} - 10 x^{18} + 177 x^{17} - 241 x^{16} - 1276 x^{15} + 3869 x^{14} + 420 x^{13} - 18915 x^{12} + 33978 x^{11} + 35140 x^{10} - 212941 x^{9} + 51215 x^{8} + 715516 x^{7} - 536463 x^{6} - 1270173 x^{5} + 1304402 x^{4} + 1073265 x^{3} - 1303520 x^{2} - 336331 x + 463261 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(117984931106580149043571777343750000=2^{4}\cdot 5^{16}\cdot 11^{4}\cdot 71^{4}\cdot 167^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 71, 167$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{53926970705097325675478645654302185835} a^{19} + \frac{547556677704172270251172434589409521}{53926970705097325675478645654302185835} a^{18} - \frac{20575662471058122634783670964807630682}{53926970705097325675478645654302185835} a^{17} + \frac{7045593130786274511082208006743696371}{53926970705097325675478645654302185835} a^{16} + \frac{966473190877367542980988787823665567}{53926970705097325675478645654302185835} a^{15} + \frac{2993065203181079710739906758441427425}{10785394141019465135095729130860437167} a^{14} - \frac{18791776631853369140261844976255405016}{53926970705097325675478645654302185835} a^{13} - \frac{1651524071603284764994423758855594143}{53926970705097325675478645654302185835} a^{12} + \frac{25118753005218080173678253315763144211}{53926970705097325675478645654302185835} a^{11} - \frac{25348298449783076662490079824943821029}{53926970705097325675478645654302185835} a^{10} + \frac{26415689073957713516977651804931430918}{53926970705097325675478645654302185835} a^{9} - \frac{2949620063849159253029744300204334982}{53926970705097325675478645654302185835} a^{8} + \frac{2474616092855269925873888542640539464}{53926970705097325675478645654302185835} a^{7} - \frac{12584694560847997494668145933049326967}{53926970705097325675478645654302185835} a^{6} - \frac{8561433945942571189263735873939749644}{53926970705097325675478645654302185835} a^{5} - \frac{3811274720256634738226584041835844657}{10785394141019465135095729130860437167} a^{4} - \frac{11328592405447560591959662567357635643}{53926970705097325675478645654302185835} a^{3} - \frac{5995850657892435456431550068061431679}{53926970705097325675478645654302185835} a^{2} - \frac{1338948281074106770894175774952623533}{2838261616057753982919928718647483465} a - \frac{22146312411755368818499074493341619842}{53926970705097325675478645654302185835}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 93653868798.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1857945600 |
| The 260 conjugacy class representatives for t20n1106 are not computed |
| Character table for t20n1106 is not computed |
Intermediate fields
| 10.10.6645000909765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }$ | R | $18{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | $18{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.3 | $x^{4} + 2 x^{2} + 4 x + 4$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.10.16.14 | $x^{10} + 20 x^{9} + 10 x^{8} + 10 x^{7} + 15 x^{6} + 15 x^{5} + 5 x^{4} + 15 x^{3} + 5 x^{2} + 20 x + 7$ | $5$ | $2$ | $16$ | $F_5$ | $[2]^{4}$ | |
| $11$ | 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 11.12.0.1 | $x^{12} - x + 7$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $71$ | 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 167 | Data not computed | ||||||