Normalized defining polynomial
\( x^{20} - 70 x^{18} + 2104 x^{16} - 36334 x^{14} + 405861 x^{12} - 3056070 x^{10} + 15118553 x^{8} - 45402178 x^{6} + 73638590 x^{4} - 53794497 x^{2} + 13845841 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(114079310946033402667018240000000000=2^{20}\cdot 5^{10}\cdot 61^{4}\cdot 3169^{2}\cdot 8951^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 61, 3169, 8951$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{61} a^{14} - \frac{9}{61} a^{12} + \frac{30}{61} a^{10} + \frac{22}{61} a^{8} + \frac{28}{61} a^{6} + \frac{30}{61} a^{4} + \frac{8}{61} a^{2}$, $\frac{1}{61} a^{15} - \frac{9}{61} a^{13} + \frac{30}{61} a^{11} + \frac{22}{61} a^{9} + \frac{28}{61} a^{7} + \frac{30}{61} a^{5} + \frac{8}{61} a^{3}$, $\frac{1}{3721} a^{16} - \frac{9}{3721} a^{14} + \frac{1555}{3721} a^{12} - \frac{1015}{3721} a^{10} + \frac{1614}{3721} a^{8} + \frac{579}{3721} a^{6} - \frac{1761}{3721} a^{4} - \frac{29}{61} a^{2}$, $\frac{1}{3721} a^{17} - \frac{9}{3721} a^{15} + \frac{1555}{3721} a^{13} - \frac{1015}{3721} a^{11} + \frac{1614}{3721} a^{9} + \frac{579}{3721} a^{7} - \frac{1761}{3721} a^{5} - \frac{29}{61} a^{3}$, $\frac{1}{6302044979011778469875779897} a^{18} - \frac{623703785121116134256314}{6302044979011778469875779897} a^{16} - \frac{46101566251879576687239220}{6302044979011778469875779897} a^{14} - \frac{2651460044103397684677812761}{6302044979011778469875779897} a^{12} - \frac{2756859837905889570862351115}{6302044979011778469875779897} a^{10} - \frac{855337973899565065470935408}{6302044979011778469875779897} a^{8} + \frac{2242523548485778863094718759}{6302044979011778469875779897} a^{6} + \frac{51327530836104193461799813}{103312212770684892948783277} a^{4} - \frac{149514161774486676109645}{1693642832306309720471857} a^{2} + \frac{5421753376254855692161}{27764636595185405253637}$, $\frac{1}{6302044979011778469875779897} a^{19} - \frac{623703785121116134256314}{6302044979011778469875779897} a^{17} - \frac{46101566251879576687239220}{6302044979011778469875779897} a^{15} - \frac{2651460044103397684677812761}{6302044979011778469875779897} a^{13} - \frac{2756859837905889570862351115}{6302044979011778469875779897} a^{11} - \frac{855337973899565065470935408}{6302044979011778469875779897} a^{9} + \frac{2242523548485778863094718759}{6302044979011778469875779897} a^{7} + \frac{51327530836104193461799813}{103312212770684892948783277} a^{5} - \frac{149514161774486676109645}{1693642832306309720471857} a^{3} + \frac{5421753376254855692161}{27764636595185405253637} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 43433793090.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 189 conjugacy class representatives for t20n1030 are not computed |
| Character table for t20n1030 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.8.88642871875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | $16{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $16{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $61$ | 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.5.0.1 | $x^{5} - x + 6$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 61.5.0.1 | $x^{5} - x + 6$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 61.6.3.1 | $x^{6} - 122 x^{4} + 3721 x^{2} - 22698100$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3169 | Data not computed | ||||||
| 8951 | Data not computed | ||||||