Properties

Label 20.14.7273589138...1875.1
Degree $20$
Signature $[14, 3]$
Discriminant $-\,5^{10}\cdot 19^{7}\cdot 1699^{4}$
Root discriminant $27.74$
Ramified primes $5, 19, 1699$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T876

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -7, 68, -188, 484, 143, -4163, 7303, -227, -10328, 7806, 2934, -5543, 922, 1425, -601, -119, 104, -6, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 6*x^19 - 6*x^18 + 104*x^17 - 119*x^16 - 601*x^15 + 1425*x^14 + 922*x^13 - 5543*x^12 + 2934*x^11 + 7806*x^10 - 10328*x^9 - 227*x^8 + 7303*x^7 - 4163*x^6 + 143*x^5 + 484*x^4 - 188*x^3 + 68*x^2 - 7*x - 1)
 
gp: K = bnfinit(x^20 - 6*x^19 - 6*x^18 + 104*x^17 - 119*x^16 - 601*x^15 + 1425*x^14 + 922*x^13 - 5543*x^12 + 2934*x^11 + 7806*x^10 - 10328*x^9 - 227*x^8 + 7303*x^7 - 4163*x^6 + 143*x^5 + 484*x^4 - 188*x^3 + 68*x^2 - 7*x - 1, 1)
 

Normalized defining polynomial

\( x^{20} - 6 x^{19} - 6 x^{18} + 104 x^{17} - 119 x^{16} - 601 x^{15} + 1425 x^{14} + 922 x^{13} - 5543 x^{12} + 2934 x^{11} + 7806 x^{10} - 10328 x^{9} - 227 x^{8} + 7303 x^{7} - 4163 x^{6} + 143 x^{5} + 484 x^{4} - 188 x^{3} + 68 x^{2} - 7 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[14, 3]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-72735891382281174868544921875=-\,5^{10}\cdot 19^{7}\cdot 1699^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $27.74$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 19, 1699$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{2334774162457612751} a^{19} - \frac{729566357696394616}{2334774162457612751} a^{18} + \frac{443689972397855123}{2334774162457612751} a^{17} + \frac{223297999453168410}{2334774162457612751} a^{16} - \frac{799051201542672512}{2334774162457612751} a^{15} - \frac{440657038487360348}{2334774162457612751} a^{14} - \frac{408808555640452044}{2334774162457612751} a^{13} - \frac{172504875701972937}{2334774162457612751} a^{12} + \frac{506146770255324339}{2334774162457612751} a^{11} + \frac{174492910090403200}{2334774162457612751} a^{10} - \frac{1146068336308558745}{2334774162457612751} a^{9} + \frac{1105445582706501284}{2334774162457612751} a^{8} + \frac{1039614784131643858}{2334774162457612751} a^{7} + \frac{137304667023164059}{2334774162457612751} a^{6} - \frac{1014558578598429441}{2334774162457612751} a^{5} - \frac{971508875726841776}{2334774162457612751} a^{4} + \frac{1852354976144526}{2334774162457612751} a^{3} - \frac{982918463652679044}{2334774162457612751} a^{2} + \frac{8067730727269828}{122882850655663829} a + \frac{592903923049759466}{2334774162457612751}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $16$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 26393498.0807 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T876:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 204800
The 230 conjugacy class representatives for t20n876 are not computed
Character table for t20n876 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 10.10.3256446753125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $20$ $20$ R ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ R ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ $20$ ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.10.5.1$x^{10} - 50 x^{6} + 625 x^{2} - 12500$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
5.10.5.1$x^{10} - 50 x^{6} + 625 x^{2} - 12500$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
$19$$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
19.2.1.2$x^{2} + 76$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
1699Data not computed