Normalized defining polynomial
\( x^{20} - 5 x^{19} - 2 x^{18} + 30 x^{17} - 247 x^{16} + 844 x^{15} + 3451 x^{14} - 9501 x^{13} - 28505 x^{12} + 25240 x^{11} + 157102 x^{10} + 56970 x^{9} - 455873 x^{8} - 406700 x^{7} + 500144 x^{6} + 721433 x^{5} + 14175 x^{4} - 374268 x^{3} - 145144 x^{2} + 55104 x + 24256 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-582377957040530370412846191406250000=-\,2^{4}\cdot 5^{15}\cdot 19^{4}\cdot 29^{6}\cdot 109^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $61.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19, 29, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{16} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{24} a^{18} + \frac{1}{8} a^{17} - \frac{5}{12} a^{16} - \frac{1}{12} a^{15} + \frac{3}{8} a^{14} - \frac{1}{6} a^{13} + \frac{11}{24} a^{12} + \frac{1}{8} a^{11} - \frac{3}{8} a^{10} - \frac{1}{3} a^{9} + \frac{1}{4} a^{8} + \frac{5}{12} a^{7} - \frac{3}{8} a^{6} - \frac{1}{6} a^{5} + \frac{1}{24} a^{3} - \frac{1}{24} a^{2} - \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{780225573390513354236341622635399061472583782490512} a^{19} + \frac{4363368960434236503378482405636329247400942596573}{780225573390513354236341622635399061472583782490512} a^{18} + \frac{16889927963603937181816891103803146010962712303181}{195056393347628338559085405658849765368145945622628} a^{17} - \frac{32525372382329625094769511702033453367195154234003}{390112786695256677118170811317699530736291891245256} a^{16} - \frac{347272885564231020712820571427023769558832221891291}{780225573390513354236341622635399061472583782490512} a^{15} + \frac{2670783253088986356181392949496537872003509716983}{390112786695256677118170811317699530736291891245256} a^{14} + \frac{1349634933652986617709510343914195596981030802945}{260075191130171118078780540878466353824194594163504} a^{13} - \frac{276644530578815334672654059272739253672761756358455}{780225573390513354236341622635399061472583782490512} a^{12} + \frac{78897666934959836025238147960213523293136055371791}{260075191130171118078780540878466353824194594163504} a^{11} + \frac{164003507288343574606410281603587532450878686356315}{390112786695256677118170811317699530736291891245256} a^{10} + \frac{106874141702718879930775699285726881791478648388567}{390112786695256677118170811317699530736291891245256} a^{9} + \frac{66320258152440847691241714906753462602410687810763}{390112786695256677118170811317699530736291891245256} a^{8} + \frac{112124100961805932393905177873172364411573227723715}{780225573390513354236341622635399061472583782490512} a^{7} + \frac{46521187514995555763107047081702032077552631105785}{390112786695256677118170811317699530736291891245256} a^{6} - \frac{22704241304704246885067250219331767333683218394593}{97528196673814169279542702829424882684072972811314} a^{5} - \frac{293573328614698985724419461369796485443349741869623}{780225573390513354236341622635399061472583782490512} a^{4} + \frac{276952789565221564725862133188897913088618036303505}{780225573390513354236341622635399061472583782490512} a^{3} - \frac{63677612861264933327627748081878649700205345837741}{130037595565085559039390270439233176912097297081752} a^{2} - \frac{6212239119826075894965365830862066655826455376557}{16254699445635694879923783804904147114012162135219} a - \frac{2999074041860333435229134007478220827255542031115}{48764098336907084639771351414712441342036486405657}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 113145783806 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 819200 |
| The 275 conjugacy class representatives for t20n955 are not computed |
| Character table for t20n955 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.8172298511640625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | R | $20$ | R | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | $16{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 19.10.0.1 | $x^{10} + x^{2} - 2 x + 14$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.8.6.2 | $x^{8} + 145 x^{4} + 7569$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 109 | Data not computed | ||||||