Normalized defining polynomial
\( x^{20} - 2 x^{19} - 16 x^{18} + 42 x^{17} - 36 x^{16} - 28 x^{15} + 297 x^{14} - 2555 x^{13} + 6196 x^{12} + 10395 x^{11} - 40015 x^{10} + 13490 x^{9} + 93845 x^{8} - 94170 x^{7} - 74560 x^{6} + 101860 x^{5} - 6530 x^{4} - 13455 x^{3} + 670 x^{2} + 245 x - 5 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5784566108091868330221282958984375=-\,5^{15}\cdot 11^{7}\cdot 9931^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 9931$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{5} a^{18} + \frac{1}{5} a^{17} + \frac{1}{5} a^{16} - \frac{1}{5} a^{15} - \frac{2}{5} a^{13} + \frac{1}{5} a^{12}$, $\frac{1}{679524878720912120948314371224398641605937835} a^{19} + \frac{31274772358623300128075697293128216220796262}{679524878720912120948314371224398641605937835} a^{18} + \frac{309477200037148371921854873046606906018596762}{679524878720912120948314371224398641605937835} a^{17} - \frac{39072536346309428787072597201787578481453546}{135904975744182424189662874244879728321187567} a^{16} + \frac{228793581370310725818171934808016712636514344}{679524878720912120948314371224398641605937835} a^{15} - \frac{331917207246097343432231762948667427596051287}{679524878720912120948314371224398641605937835} a^{14} + \frac{215457229187048674624160107056232260926536244}{679524878720912120948314371224398641605937835} a^{13} - \frac{278963329356203883806406747729682652961346959}{679524878720912120948314371224398641605937835} a^{12} + \frac{20320301586742746795323378660833002703675452}{135904975744182424189662874244879728321187567} a^{11} - \frac{25062174993570739002024143885648943363999482}{135904975744182424189662874244879728321187567} a^{10} + \frac{67930152739745946878077497425838073750817536}{135904975744182424189662874244879728321187567} a^{9} + \frac{52218002866321422792455224011183771444731655}{135904975744182424189662874244879728321187567} a^{8} - \frac{9292777867208541633079459295395543889426768}{135904975744182424189662874244879728321187567} a^{7} - \frac{26871270499365744882123231762759391116808727}{135904975744182424189662874244879728321187567} a^{6} + \frac{619650392240040648314706502289013677516715}{7152893460220127588929624960256827806378293} a^{5} + \frac{52283974489939564567662104762366276550559465}{135904975744182424189662874244879728321187567} a^{4} - \frac{12939477982202014404388299348383282050670897}{135904975744182424189662874244879728321187567} a^{3} - \frac{7016557347589837303650871296683683765717412}{135904975744182424189662874244879728321187567} a^{2} - \frac{60778764513591346714065000434380679257302657}{135904975744182424189662874244879728321187567} a - \frac{56612566496860314484203858160640653388606356}{135904975744182424189662874244879728321187567}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11626313713.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 324 conjugacy class representatives for t20n1023 are not computed |
| Character table for t20n1023 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.932312193828125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | $20$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | $20$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $11$ | 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.8.6.1 | $x^{8} + 143 x^{4} + 5929$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| 11.10.0.1 | $x^{10} + x^{2} - x + 6$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 9931 | Data not computed | ||||||