Normalized defining polynomial
\( x^{20} - 2 x^{19} - 19 x^{18} - 4 x^{17} + 213 x^{16} + 302 x^{15} - 1179 x^{14} - 2868 x^{13} + 6790 x^{12} + 8088 x^{11} - 29132 x^{10} - 6536 x^{9} + 60204 x^{8} + 1444 x^{7} - 49614 x^{6} + 648 x^{5} + 14584 x^{4} + 160 x^{3} - 1032 x^{2} - 128 x - 4 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5140615083075201996699936766296064=-\,2^{46}\cdot 31^{7}\cdot 227^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 31, 227$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{9}$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6}$, $\frac{1}{469896622688846169507989686777026243604} a^{19} + \frac{22089168717562769379095745646668859779}{234948311344423084753994843388513121802} a^{18} - \frac{8844589865951117443341588923859142273}{234948311344423084753994843388513121802} a^{17} + \frac{21893649140231891520240998683290677527}{234948311344423084753994843388513121802} a^{16} - \frac{109550193582495958423960263730923868103}{469896622688846169507989686777026243604} a^{15} - \frac{7659284312984858135334570362591533834}{117474155672211542376997421694256560901} a^{14} + \frac{10471508712068355698018598615891572251}{234948311344423084753994843388513121802} a^{13} + \frac{22579649424823586143303707208973722743}{234948311344423084753994843388513121802} a^{12} + \frac{8687064319347600538284422255801714826}{117474155672211542376997421694256560901} a^{11} - \frac{97355161216150841968253437246851408015}{234948311344423084753994843388513121802} a^{10} - \frac{102002196134993153226148145148636961197}{234948311344423084753994843388513121802} a^{9} + \frac{10153636923482152959339594218492351439}{234948311344423084753994843388513121802} a^{8} + \frac{31543029753106141725778260096813242225}{234948311344423084753994843388513121802} a^{7} - \frac{6802036864874009553417624131428946431}{117474155672211542376997421694256560901} a^{6} - \frac{25830074676669562039458463376427892474}{117474155672211542376997421694256560901} a^{5} + \frac{49440691205933973543385423123165877579}{117474155672211542376997421694256560901} a^{4} - \frac{25555401823145914175937210386093983278}{117474155672211542376997421694256560901} a^{3} - \frac{14865416150777966873532587282694606653}{117474155672211542376997421694256560901} a^{2} + \frac{41200483409595525017456854816522944951}{117474155672211542376997421694256560901} a - \frac{38190319053635922657856854489282748398}{117474155672211542376997421694256560901}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 51834053863.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 14745600 |
| The 384 conjugacy class representatives for t20n1037 are not computed |
| Character table for t20n1037 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 10.10.207699287474176.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | $16{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ | $16{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.11.1 | $x^{6} + 14$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ |
| 2.6.11.1 | $x^{6} + 14$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ | |
| 2.8.24.7 | $x^{8} + 8 x^{7} + 12 x^{6} + 10 x^{4} + 8 x^{3} + 4 x^{2} + 8 x + 14$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ | |
| 31 | Data not computed | ||||||
| 227 | Data not computed | ||||||