Normalized defining polynomial
\( x^{20} - 4 x^{19} - 22 x^{18} + 84 x^{17} + 194 x^{16} - 604 x^{15} - 1036 x^{14} + 1492 x^{13} + 5001 x^{12} + 552 x^{11} - 20502 x^{10} - 3352 x^{9} + 48973 x^{8} - 12160 x^{7} - 54194 x^{6} + 34260 x^{5} + 16936 x^{4} - 20996 x^{3} + 5824 x^{2} - 456 x - 9 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5140615083075201996699936766296064=-\,2^{46}\cdot 31^{7}\cdot 227^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 31, 227$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{3} a^{18} - \frac{1}{3} a^{16} - \frac{1}{3} a^{15} + \frac{1}{3} a^{14} - \frac{1}{3} a^{12} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{1781439322156942087015223030201505} a^{19} - \frac{18515177772135182272581321375518}{118762621477129472467681535346767} a^{18} + \frac{264915284899439644231739093510003}{1781439322156942087015223030201505} a^{17} - \frac{169026001476963562929792672912739}{1781439322156942087015223030201505} a^{16} + \frac{552426860756547263034120809276818}{1781439322156942087015223030201505} a^{15} - \frac{620060424116658683488215576629}{2365789272452778336009592337585} a^{14} + \frac{283909565085215847175162672102676}{1781439322156942087015223030201505} a^{13} - \frac{34676882741221450339313834461778}{593813107385647362338407676733835} a^{12} - \frac{22077927759087483367460743486489}{118762621477129472467681535346767} a^{11} - \frac{101712851538219432918759082587106}{593813107385647362338407676733835} a^{10} + \frac{133993376495899100236722493100632}{593813107385647362338407676733835} a^{9} - \frac{27045060130156099748766063220153}{1781439322156942087015223030201505} a^{8} + \frac{26326982109874303059870587939877}{593813107385647362338407676733835} a^{7} + \frac{135306128599736805918862910001839}{1781439322156942087015223030201505} a^{6} - \frac{24755533943110059982988431885626}{593813107385647362338407676733835} a^{5} - \frac{120407277577465155845878521526724}{593813107385647362338407676733835} a^{4} - \frac{316905355394235100355800973767817}{1781439322156942087015223030201505} a^{3} + \frac{163174677846617928425412244440416}{1781439322156942087015223030201505} a^{2} - \frac{214446103746206579215641692454354}{593813107385647362338407676733835} a - \frac{224835584391129803912757434821248}{593813107385647362338407676733835}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20295301629.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 14745600 |
| The 384 conjugacy class representatives for t20n1037 are not computed |
| Character table for t20n1037 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 10.10.207699287474176.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | $16{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | $16{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | R | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.7 | $x^{8} + 2 x^{4} + 16 x + 4$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ |
| 2.12.24.342 | $x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{5} - 2 x^{4} + 4 x^{3} - 2 x^{2} + 4 x - 2$ | $12$ | $1$ | $24$ | $C_2 \times S_4$ | $[4/3, 4/3, 3]_{3}^{2}$ | |
| 31 | Data not computed | ||||||
| 227 | Data not computed | ||||||