Normalized defining polynomial
\( x^{20} - 10 x^{19} + 33 x^{18} - 12 x^{17} - 287 x^{16} + 1276 x^{15} - 2187 x^{14} - 1513 x^{13} + 14905 x^{12} - 33361 x^{11} + 24582 x^{10} + 55042 x^{9} - 148264 x^{8} + 121493 x^{7} + 82548 x^{6} - 313055 x^{5} + 101822 x^{4} + 286818 x^{3} - 64330 x^{2} - 125501 x - 25541 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4075596666226495465452050537109375=-\,3^{8}\cdot 5^{12}\cdot 239^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 239$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{11} a^{15} - \frac{2}{11} a^{14} - \frac{3}{11} a^{13} + \frac{4}{11} a^{12} - \frac{5}{11} a^{9} - \frac{5}{11} a^{8} + \frac{4}{11} a^{7} + \frac{2}{11} a^{6} + \frac{3}{11} a^{5} + \frac{1}{11} a^{4} + \frac{4}{11} a^{2} - \frac{1}{11} a + \frac{4}{11}$, $\frac{1}{3905} a^{16} - \frac{8}{3905} a^{15} + \frac{1373}{3905} a^{14} - \frac{151}{355} a^{13} - \frac{266}{3905} a^{12} - \frac{11}{71} a^{11} - \frac{874}{3905} a^{10} - \frac{1383}{3905} a^{9} - \frac{1869}{3905} a^{8} - \frac{4}{355} a^{7} - \frac{290}{781} a^{6} - \frac{1216}{3905} a^{5} - \frac{1084}{3905} a^{4} - \frac{1052}{3905} a^{3} + \frac{1537}{3905} a^{2} + \frac{791}{3905} a + \frac{1274}{3905}$, $\frac{1}{113245} a^{17} + \frac{6}{113245} a^{16} + \frac{4811}{113245} a^{15} - \frac{1534}{10295} a^{14} - \frac{7615}{22649} a^{13} + \frac{21586}{113245} a^{12} + \frac{10181}{113245} a^{11} - \frac{37049}{113245} a^{10} - \frac{54601}{113245} a^{9} - \frac{8011}{22649} a^{8} + \frac{8229}{113245} a^{7} - \frac{10511}{113245} a^{6} + \frac{3227}{10295} a^{5} - \frac{20488}{113245} a^{4} - \frac{17096}{113245} a^{3} + \frac{2254}{10295} a^{2} + \frac{51753}{113245} a + \frac{796}{113245}$, $\frac{1}{218352525993159855} a^{18} - \frac{3}{72784175331053285} a^{17} - \frac{18086605126946}{218352525993159855} a^{16} + \frac{144692841015772}{218352525993159855} a^{15} + \frac{600595947811347}{2509799149346665} a^{14} + \frac{68409995051432663}{218352525993159855} a^{13} - \frac{71755534399391377}{218352525993159855} a^{12} - \frac{5169384339912123}{72784175331053285} a^{11} - \frac{28249808707994011}{72784175331053285} a^{10} + \frac{68359767205039961}{218352525993159855} a^{9} + \frac{12903795847798232}{218352525993159855} a^{8} + \frac{34890183779055377}{218352525993159855} a^{7} + \frac{14634529040139214}{72784175331053285} a^{6} - \frac{1328651966752474}{7529397448039995} a^{5} + \frac{3523486333917757}{218352525993159855} a^{4} + \frac{3853711380418946}{72784175331053285} a^{3} + \frac{1068309469755853}{72784175331053285} a^{2} - \frac{29530437001576837}{72784175331053285} a - \frac{103867453773365218}{218352525993159855}$, $\frac{1}{2401877785924758405} a^{19} - \frac{4}{2401877785924758405} a^{18} + \frac{1194822396799}{2401877785924758405} a^{17} - \frac{36544106190391}{800625928641586135} a^{16} + \frac{88424216167153964}{2401877785924758405} a^{15} + \frac{28666004559855622}{82823371928439945} a^{14} + \frac{132514073933674681}{800625928641586135} a^{13} - \frac{776968798137285509}{2401877785924758405} a^{12} - \frac{296200761538769796}{800625928641586135} a^{11} + \frac{4365333021624016}{218352525993159855} a^{10} + \frac{213796179003489884}{800625928641586135} a^{9} - \frac{314793758422854406}{800625928641586135} a^{8} - \frac{940642461725560478}{2401877785924758405} a^{7} - \frac{172094472249376016}{2401877785924758405} a^{6} - \frac{3068053092086326}{11276421530163185} a^{5} + \frac{96007993608301763}{2401877785924758405} a^{4} - \frac{19077677829174212}{72784175331053285} a^{3} + \frac{7022860447140787}{27607790642813315} a^{2} + \frac{85864331249480152}{218352525993159855} a - \frac{219675563766752716}{480375557184951681}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11158823549.6 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20480 |
| The 152 conjugacy class representatives for t20n525 are not computed |
| Character table for t20n525 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.12852225.1, 10.10.825898437253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | $20$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 239 | Data not computed | ||||||