Normalized defining polynomial
\( x^{20} - 15 x^{18} - 19 x^{17} + 58 x^{16} + 109 x^{15} - 344 x^{14} + 1548 x^{13} + 5860 x^{12} - 13918 x^{11} - 33252 x^{10} + 34151 x^{9} + 66757 x^{8} - 23680 x^{7} - 32803 x^{6} - 9863 x^{5} - 30395 x^{4} + 13443 x^{3} + 26654 x^{2} - 3750 x - 4491 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4075596666226495465452050537109375=-\,3^{8}\cdot 5^{12}\cdot 239^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 239$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{16} + \frac{1}{3} a^{14} - \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{9} a^{18} - \frac{1}{9} a^{17} - \frac{2}{9} a^{16} + \frac{1}{9} a^{15} + \frac{4}{9} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{4}{9} a^{10} + \frac{4}{9} a^{9} - \frac{1}{9} a^{8} - \frac{1}{3} a^{7} + \frac{1}{9} a^{6} - \frac{2}{9} a^{5} - \frac{2}{9} a^{4} + \frac{1}{9} a^{2} - \frac{1}{9} a - \frac{1}{3}$, $\frac{1}{9598746439564483564928066406945878155705281477} a^{19} - \frac{384688223546576264070701577269228922771613297}{9598746439564483564928066406945878155705281477} a^{18} - \frac{386137689510169015235224738585214284829203640}{9598746439564483564928066406945878155705281477} a^{17} + \frac{121072446804478049316325921007953202627770577}{417336801720194937605568104649820789378490499} a^{16} + \frac{155611373617174996270536706378465364490922765}{1066527382173831507214229600771764239522809053} a^{15} - \frac{3309276169166422250342945133520178992506821162}{9598746439564483564928066406945878155705281477} a^{14} + \frac{1391076093314718358319009245334937882088031398}{3199582146521494521642688802315292718568427159} a^{13} + \frac{25403120774840612135351295922458529928032461}{96957034743075591564929963706524021774800823} a^{12} - \frac{68028609455154761739587851315888338772749482}{505197181029709661312003495102414639773962183} a^{11} - \frac{4465616181446044696411032401920132492345583594}{9598746439564483564928066406945878155705281477} a^{10} + \frac{1775385371533984878330775339463590431541215152}{9598746439564483564928066406945878155705281477} a^{9} - \frac{48985333737325591054689145041101355160767083}{3199582146521494521642688802315292718568427159} a^{8} + \frac{9215779239114068214855087771019475991335585}{872613312687680324084369673358716195973207407} a^{7} + \frac{969046195887356159559485472946272257148342385}{9598746439564483564928066406945878155705281477} a^{6} - \frac{753243169672370743771353844211528282632860011}{9598746439564483564928066406945878155705281477} a^{5} - \frac{119939163198393656512744659384385834300260808}{1066527382173831507214229600771764239522809053} a^{4} + \frac{2651407672089722620181874265139064122917166350}{9598746439564483564928066406945878155705281477} a^{3} - \frac{1005104034018813900824026681558691848628231941}{9598746439564483564928066406945878155705281477} a^{2} - \frac{1248720669820237384808255064698274080466350114}{3199582146521494521642688802315292718568427159} a + \frac{399821602919679167099529762066458962874051715}{1066527382173831507214229600771764239522809053}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13228720565.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20480 |
| The 152 conjugacy class representatives for t20n525 are not computed |
| Character table for t20n525 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.12852225.1, 10.10.825898437253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | $20$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | $20$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 239 | Data not computed | ||||||