Normalized defining polynomial
\( x^{20} - 5 x^{19} - 3 x^{18} + 16 x^{17} - 14 x^{16} + 306 x^{15} - 267 x^{14} - 587 x^{13} - 682 x^{12} - 1621 x^{11} + 4604 x^{10} + 6116 x^{9} - 4753 x^{8} - 6366 x^{7} - 166 x^{6} + 2044 x^{5} + 1142 x^{4} - 428 x^{3} - 284 x^{2} + 117 x - 11 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-367090109903933844075668896484375=-\,5^{11}\cdot 13^{12}\cdot 19^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{116} a^{17} + \frac{1}{58} a^{16} - \frac{11}{116} a^{15} + \frac{27}{116} a^{14} + \frac{7}{58} a^{13} - \frac{9}{58} a^{12} - \frac{2}{29} a^{11} + \frac{3}{58} a^{10} - \frac{14}{29} a^{9} - \frac{11}{116} a^{8} + \frac{55}{116} a^{7} - \frac{11}{116} a^{6} + \frac{12}{29} a^{5} - \frac{7}{116} a^{4} - \frac{13}{58} a^{3} - \frac{1}{4} a^{2} - \frac{51}{116} a + \frac{23}{58}$, $\frac{1}{580} a^{18} - \frac{1}{290} a^{17} + \frac{1}{58} a^{16} + \frac{13}{580} a^{15} - \frac{13}{116} a^{14} + \frac{13}{580} a^{13} + \frac{61}{290} a^{12} - \frac{97}{290} a^{11} + \frac{47}{290} a^{10} + \frac{31}{116} a^{9} - \frac{15}{116} a^{8} + \frac{73}{290} a^{7} + \frac{1}{116} a^{6} - \frac{28}{145} a^{5} + \frac{59}{290} a^{4} + \frac{11}{29} a^{3} + \frac{239}{580} a^{2} - \frac{11}{580} a + \frac{19}{580}$, $\frac{1}{93346971448743149967020} a^{19} - \frac{7687489865784530511}{23336742862185787491755} a^{18} + \frac{74697779151484024967}{46673485724371574983510} a^{17} - \frac{2086221344114902516708}{23336742862185787491755} a^{16} - \frac{942103173570913328171}{93346971448743149967020} a^{15} + \frac{5289214998511168408797}{23336742862185787491755} a^{14} - \frac{11981887264028344092369}{93346971448743149967020} a^{13} - \frac{1212430232242241393097}{23336742862185787491755} a^{12} - \frac{23041091192314007486899}{46673485724371574983510} a^{11} - \frac{12263969633644625718923}{93346971448743149967020} a^{10} - \frac{251628471204301608033}{643772216887883792876} a^{9} + \frac{86832353540696050646}{295401808382098575845} a^{8} + \frac{13838973037175854131719}{46673485724371574983510} a^{7} + \frac{31241412753339006516793}{93346971448743149967020} a^{6} + \frac{17178572501818063814447}{93346971448743149967020} a^{5} + \frac{12392025521919366845247}{46673485724371574983510} a^{4} - \frac{6209569721494980730599}{23336742862185787491755} a^{3} + \frac{17666429475861843804151}{93346971448743149967020} a^{2} - \frac{10008798572886973777856}{23336742862185787491755} a - \frac{63941139584932374857}{3218861084439418964380}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2863095318.68 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 40960 |
| The 124 conjugacy class representatives for t20n633 are not computed |
| Character table for t20n633 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.19827925.1, 10.10.1965733049028125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | R | $20$ | R | $20$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 13 | Data not computed | ||||||
| $19$ | 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 19.8.4.1 | $x^{8} + 7220 x^{4} - 27436 x^{2} + 13032100$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |