Normalized defining polynomial
\( x^{20} - 6 x^{19} - 14 x^{18} + 138 x^{17} - 30 x^{16} - 1030 x^{15} + 707 x^{14} + 3410 x^{13} + 2091 x^{12} - 16890 x^{11} - 23697 x^{10} + 103685 x^{9} - 13247 x^{8} - 225987 x^{7} + 206875 x^{6} + 64934 x^{5} - 125856 x^{4} + 1829 x^{3} + 20366 x^{2} + 495 x - 575 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3532482967262878713879394531250000=-\,2^{4}\cdot 5^{17}\cdot 11^{4}\cdot 71^{4}\cdot 167^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 71, 167$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{2}{5} a^{10} + \frac{2}{5} a^{8} + \frac{1}{5} a^{6} - \frac{1}{5} a^{5} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5} a$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{11} + \frac{2}{5} a^{9} + \frac{1}{5} a^{7} - \frac{1}{5} a^{6} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2}$, $\frac{1}{5} a^{14} - \frac{2}{5} a^{10} + \frac{2}{5} a^{8} - \frac{1}{5} a^{7} - \frac{2}{5} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{5} a^{3} - \frac{2}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{5} a^{15} - \frac{2}{5} a^{11} + \frac{2}{5} a^{9} - \frac{1}{5} a^{8} - \frac{2}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{25} a^{16} + \frac{1}{25} a^{15} - \frac{1}{25} a^{14} + \frac{1}{25} a^{12} - \frac{7}{25} a^{11} + \frac{2}{5} a^{10} + \frac{6}{25} a^{9} - \frac{9}{25} a^{8} - \frac{1}{5} a^{7} - \frac{3}{25} a^{6} + \frac{6}{25} a^{5} + \frac{11}{25} a^{4} - \frac{8}{25} a^{3} - \frac{9}{25} a^{2} - \frac{1}{5} a$, $\frac{1}{25} a^{17} - \frac{2}{25} a^{15} + \frac{1}{25} a^{14} + \frac{1}{25} a^{13} + \frac{2}{25} a^{12} - \frac{8}{25} a^{11} - \frac{9}{25} a^{10} + \frac{2}{5} a^{9} - \frac{1}{25} a^{8} + \frac{2}{25} a^{7} - \frac{6}{25} a^{6} - \frac{1}{5} a^{5} + \frac{6}{25} a^{4} - \frac{11}{25} a^{3} - \frac{11}{25} a^{2}$, $\frac{1}{3950} a^{18} + \frac{11}{790} a^{17} - \frac{29}{1975} a^{16} + \frac{9}{790} a^{15} - \frac{13}{3950} a^{14} + \frac{31}{1975} a^{13} - \frac{152}{1975} a^{12} + \frac{429}{1975} a^{11} - \frac{179}{790} a^{10} + \frac{743}{3950} a^{9} + \frac{1691}{3950} a^{8} + \frac{819}{3950} a^{7} - \frac{87}{3950} a^{6} + \frac{71}{790} a^{5} + \frac{1263}{3950} a^{4} + \frac{521}{1975} a^{3} + \frac{1619}{3950} a^{2} - \frac{72}{395} a - \frac{51}{158}$, $\frac{1}{34344123060702775249641906726250} a^{19} + \frac{1085058913810773151011202867}{34344123060702775249641906726250} a^{18} - \frac{11258621963502447534003836581}{592140052770737504304170805625} a^{17} + \frac{598259210619747939109657855059}{34344123060702775249641906726250} a^{16} + \frac{872854411644144060915049699527}{34344123060702775249641906726250} a^{15} + \frac{1581976994979038727149144631908}{17172061530351387624820953363125} a^{14} + \frac{13237915613983625296761062218}{137376492242811100998567626905} a^{13} - \frac{204186575066349105189040717659}{3434412306070277524964190672625} a^{12} - \frac{13552509588819760744314625045929}{34344123060702775249641906726250} a^{11} - \frac{35336018117501023129427893133}{1184280105541475008608341611250} a^{10} + \frac{2800969318335688855294553910917}{34344123060702775249641906726250} a^{9} + \frac{2539698212468098595818344979701}{34344123060702775249641906726250} a^{8} - \frac{8131697057237122474152014788549}{34344123060702775249641906726250} a^{7} - \frac{7805928227246240308322267029639}{34344123060702775249641906726250} a^{6} - \frac{6088174750786181373330860104197}{34344123060702775249641906726250} a^{5} + \frac{921300349823482385110271686764}{17172061530351387624820953363125} a^{4} - \frac{4554684183559038802474565023037}{34344123060702775249641906726250} a^{3} - \frac{3814816419514271058683197513436}{17172061530351387624820953363125} a^{2} + \frac{37729397883917777897485922243}{236856021108295001721668322250} a + \frac{312276885728686190169074573238}{686882461214055504992838134525}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10784736338.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1857945600 |
| The 260 conjugacy class representatives for t20n1106 are not computed |
| Character table for t20n1106 is not computed |
Intermediate fields
| 10.10.6645000909765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.8.0.1}{8} }$ | R | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | $18{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.4 | $x^{4} - 5$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.10.17.7 | $x^{10} - 15 x^{8} + 5$ | $10$ | $1$ | $17$ | $F_{5}\times C_2$ | $[2]_{2}^{4}$ | |
| $11$ | 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 11.12.0.1 | $x^{12} - x + 7$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $71$ | 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 71.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 71.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 71.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $167$ | $\Q_{167}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{167}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 167.4.0.1 | $x^{4} - x + 60$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 167.6.0.1 | $x^{6} - x + 23$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 167.8.4.1 | $x^{8} + 3346680 x^{4} - 4657463 x^{2} + 2800066755600$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |