Normalized defining polynomial
\( x^{20} - 10 x^{18} + 30 x^{16} - 147 x^{12} + 199 x^{10} + 75 x^{8} - 290 x^{6} + 146 x^{4} - 4 x^{2} - 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3370778611471959737030176850944=-\,2^{10}\cdot 38569^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 38569$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} - \frac{1}{5} a^{2} + \frac{2}{5}$, $\frac{1}{5} a^{11} - \frac{1}{5} a^{3} + \frac{2}{5} a$, $\frac{1}{5} a^{12} - \frac{1}{5} a^{4} + \frac{2}{5} a^{2}$, $\frac{1}{5} a^{13} - \frac{1}{5} a^{5} + \frac{2}{5} a^{3}$, $\frac{1}{5} a^{14} - \frac{1}{5} a^{6} + \frac{2}{5} a^{4}$, $\frac{1}{10} a^{15} - \frac{1}{10} a^{14} - \frac{1}{10} a^{13} - \frac{1}{10} a^{10} - \frac{1}{2} a^{9} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{3}{10} a^{5} - \frac{1}{5} a^{4} + \frac{3}{10} a^{3} - \frac{2}{5} a^{2} - \frac{1}{2} a + \frac{3}{10}$, $\frac{1}{10} a^{16} - \frac{1}{10} a^{13} - \frac{1}{10} a^{11} - \frac{1}{2} a^{9} + \frac{2}{5} a^{8} - \frac{3}{10} a^{6} + \frac{1}{10} a^{5} - \frac{1}{2} a^{4} - \frac{1}{10} a^{3} - \frac{1}{2} a^{2} - \frac{1}{5} a - \frac{1}{2}$, $\frac{1}{10} a^{17} - \frac{1}{10} a^{14} - \frac{1}{10} a^{12} - \frac{1}{10} a^{10} + \frac{2}{5} a^{9} - \frac{3}{10} a^{7} + \frac{1}{10} a^{6} - \frac{1}{2} a^{5} - \frac{1}{10} a^{4} - \frac{1}{2} a^{3} + \frac{2}{5} a^{2} - \frac{1}{2} a - \frac{1}{5}$, $\frac{1}{10} a^{18} - \frac{1}{10} a^{14} - \frac{1}{10} a^{11} - \frac{1}{10} a^{10} - \frac{1}{2} a^{9} - \frac{3}{10} a^{8} - \frac{1}{2} a^{7} + \frac{1}{10} a^{6} + \frac{3}{10} a^{4} + \frac{1}{10} a^{3} - \frac{1}{2} a^{2} + \frac{3}{10} a - \frac{1}{2}$, $\frac{1}{10} a^{19} - \frac{1}{10} a^{14} - \frac{1}{10} a^{13} - \frac{1}{10} a^{12} - \frac{1}{10} a^{11} + \frac{1}{5} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{10} a^{4} - \frac{1}{5} a^{3} + \frac{3}{10} a^{2} - \frac{1}{2}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 161053396.315 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 136 conjugacy class representatives for t20n808 are not computed |
| Character table for t20n808 is not computed |
Intermediate fields
| 10.10.57374000974009.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ |
| 2.10.10.13 | $x^{10} - 15 x^{8} + 26 x^{6} - 22 x^{4} + 37 x^{2} - 59$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| 38569 | Data not computed | ||||||