Properties

Label 20.14.2180059243...0000.2
Degree $20$
Signature $[14, 3]$
Discriminant $-\,2^{40}\cdot 5^{11}\cdot 67^{8}$
Root discriminant $52.11$
Ramified primes $2, 5, 67$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T803

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![164, -424, -2794, 7366, 7075, -19316, -10376, 17908, 6580, -8844, -582, 5846, 1733, -1780, -1080, 152, 228, 12, -22, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 2*x^19 - 22*x^18 + 12*x^17 + 228*x^16 + 152*x^15 - 1080*x^14 - 1780*x^13 + 1733*x^12 + 5846*x^11 - 582*x^10 - 8844*x^9 + 6580*x^8 + 17908*x^7 - 10376*x^6 - 19316*x^5 + 7075*x^4 + 7366*x^3 - 2794*x^2 - 424*x + 164)
 
gp: K = bnfinit(x^20 - 2*x^19 - 22*x^18 + 12*x^17 + 228*x^16 + 152*x^15 - 1080*x^14 - 1780*x^13 + 1733*x^12 + 5846*x^11 - 582*x^10 - 8844*x^9 + 6580*x^8 + 17908*x^7 - 10376*x^6 - 19316*x^5 + 7075*x^4 + 7366*x^3 - 2794*x^2 - 424*x + 164, 1)
 

Normalized defining polynomial

\( x^{20} - 2 x^{19} - 22 x^{18} + 12 x^{17} + 228 x^{16} + 152 x^{15} - 1080 x^{14} - 1780 x^{13} + 1733 x^{12} + 5846 x^{11} - 582 x^{10} - 8844 x^{9} + 6580 x^{8} + 17908 x^{7} - 10376 x^{6} - 19316 x^{5} + 7075 x^{4} + 7366 x^{3} - 2794 x^{2} - 424 x + 164 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[14, 3]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-21800592438355578532659200000000000=-\,2^{40}\cdot 5^{11}\cdot 67^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $52.11$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 67$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{13} - \frac{1}{3} a^{12} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{66} a^{18} - \frac{2}{33} a^{17} + \frac{5}{33} a^{16} + \frac{1}{11} a^{15} - \frac{1}{11} a^{14} - \frac{7}{33} a^{12} - \frac{7}{33} a^{11} + \frac{17}{66} a^{10} - \frac{4}{11} a^{9} + \frac{14}{33} a^{8} + \frac{1}{11} a^{7} - \frac{10}{33} a^{6} + \frac{5}{11} a^{5} + \frac{3}{11} a^{4} + \frac{1}{33} a^{3} + \frac{1}{66} a^{2} - \frac{1}{33} a + \frac{14}{33}$, $\frac{1}{2660992033398012722381529798} a^{19} - \frac{1069555495595240660392048}{443498672233002120396921633} a^{18} + \frac{16120753607358813857674040}{120954183336273305562796809} a^{17} + \frac{134663591432713386411621098}{1330496016699006361190764899} a^{16} - \frac{4235356306572210752204438}{1330496016699006361190764899} a^{15} + \frac{70344210486468188835887413}{443498672233002120396921633} a^{14} + \frac{92055917489224774753910456}{443498672233002120396921633} a^{13} - \frac{83698841203842371895270836}{1330496016699006361190764899} a^{12} + \frac{261841140922302665676580787}{886997344466004240793843266} a^{11} - \frac{64448265369930930894194183}{1330496016699006361190764899} a^{10} + \frac{279864379378970182167740837}{1330496016699006361190764899} a^{9} - \frac{310501820905068756004765598}{1330496016699006361190764899} a^{8} - \frac{208311462016774029842555393}{1330496016699006361190764899} a^{7} + \frac{460633924293168270087134572}{1330496016699006361190764899} a^{6} - \frac{421723114009087375114819379}{1330496016699006361190764899} a^{5} - \frac{172765392530499052811713553}{1330496016699006361190764899} a^{4} - \frac{1203326855284967294768069023}{2660992033398012722381529798} a^{3} + \frac{93009283304737014938813401}{1330496016699006361190764899} a^{2} - \frac{134066365053111336478192723}{443498672233002120396921633} a - \frac{10934287854615640311162023}{1330496016699006361190764899}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $16$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 45257010559.4 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T803:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 122880
The 126 conjugacy class representatives for t20n803 are not computed
Character table for t20n803 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 5.5.5745920.1, 10.10.4126949580800000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
5.6.3.1$x^{6} - 10 x^{4} + 25 x^{2} - 500$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
5.6.3.1$x^{6} - 10 x^{4} + 25 x^{2} - 500$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$67$67.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
67.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
67.6.4.1$x^{6} + 2345 x^{3} + 7756992$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
67.6.4.1$x^{6} + 2345 x^{3} + 7756992$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$