Normalized defining polynomial
\( x^{20} - 21 x^{18} - 22 x^{17} + 31 x^{16} + 688 x^{15} + 1554 x^{14} - 7300 x^{13} - 11818 x^{12} + 34332 x^{11} + 41076 x^{10} - 80412 x^{9} - 103678 x^{8} + 125000 x^{7} + 174218 x^{6} - 170940 x^{5} - 121595 x^{4} + 132356 x^{3} + 5801 x^{2} - 18814 x - 461 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-21800592438355578532659200000000000=-\,2^{40}\cdot 5^{11}\cdot 67^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{12} a^{16} - \frac{1}{12} a^{14} - \frac{1}{6} a^{13} - \frac{1}{6} a^{12} + \frac{1}{3} a^{11} - \frac{1}{12} a^{10} + \frac{1}{6} a^{9} - \frac{1}{6} a^{8} + \frac{1}{3} a^{7} - \frac{5}{12} a^{6} + \frac{1}{6} a^{5} + \frac{1}{6} a^{4} + \frac{1}{3} a^{3} + \frac{1}{4} a^{2} - \frac{1}{6} a + \frac{1}{12}$, $\frac{1}{12} a^{17} - \frac{1}{12} a^{15} - \frac{1}{6} a^{14} - \frac{1}{6} a^{13} - \frac{1}{6} a^{12} - \frac{1}{12} a^{11} - \frac{1}{3} a^{10} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{5}{12} a^{7} + \frac{1}{6} a^{6} + \frac{1}{6} a^{5} - \frac{1}{6} a^{4} + \frac{1}{4} a^{3} + \frac{1}{3} a^{2} + \frac{1}{12} a - \frac{1}{2}$, $\frac{1}{60} a^{18} + \frac{1}{60} a^{17} + \frac{1}{60} a^{16} - \frac{1}{4} a^{15} + \frac{1}{5} a^{14} + \frac{1}{6} a^{13} + \frac{11}{60} a^{12} + \frac{7}{20} a^{11} - \frac{13}{30} a^{10} - \frac{3}{10} a^{9} - \frac{23}{60} a^{8} + \frac{17}{60} a^{7} - \frac{2}{5} a^{6} - \frac{1}{30} a^{5} - \frac{13}{60} a^{4} - \frac{1}{4} a^{3} + \frac{17}{60} a^{2} - \frac{9}{20} a - \frac{1}{15}$, $\frac{1}{59386950241092687108614834912761189573260} a^{19} - \frac{124827839530301537168323516886329461087}{19795650080364229036204944970920396524420} a^{18} + \frac{96822971132526843705351985271604053487}{4948912520091057259051236242730099131105} a^{17} + \frac{419041955564903164249540440460771615241}{19795650080364229036204944970920396524420} a^{16} + \frac{15913697294102020558643950947140692799}{1799604552760384457836813179174581502220} a^{15} + \frac{603673706614724413024854843518626233808}{4948912520091057259051236242730099131105} a^{14} - \frac{167175640932529368588341475104007835669}{59386950241092687108614834912761189573260} a^{13} - \frac{6108527824010419088909451261253367836261}{59386950241092687108614834912761189573260} a^{12} - \frac{23737593332171634943041729969938988130003}{59386950241092687108614834912761189573260} a^{11} + \frac{3550186854522926985594459824231717569651}{14846737560273171777153708728190297393315} a^{10} - \frac{3525686407321273215749438464115983430099}{19795650080364229036204944970920396524420} a^{9} + \frac{11507766339139592120764502867844411419363}{59386950241092687108614834912761189573260} a^{8} - \frac{20223233574225369488821691135591283496153}{59386950241092687108614834912761189573260} a^{7} - \frac{4453849386027258890645254886173991269936}{14846737560273171777153708728190297393315} a^{6} + \frac{2966900983890276641594145314325493307677}{19795650080364229036204944970920396524420} a^{5} - \frac{3513580175861550086598710892204944982963}{19795650080364229036204944970920396524420} a^{4} - \frac{2223264864354223462170368845774577938604}{4948912520091057259051236242730099131105} a^{3} + \frac{4410916079028188339682836499075584315869}{59386950241092687108614834912761189573260} a^{2} - \frac{60562576013869395957403203330291364521}{359920910552076891567362635834916300444} a - \frac{6895827518875449880105293830573230324213}{14846737560273171777153708728190297393315}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 45704084958.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 126 conjugacy class representatives for t20n803 are not computed |
| Character table for t20n803 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.5745920.1, 10.10.4126949580800000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $67$ | 67.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 67.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 67.6.4.1 | $x^{6} + 2345 x^{3} + 7756992$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 67.6.4.1 | $x^{6} + 2345 x^{3} + 7756992$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |