Properties

Label 20.12.9977722729...5625.1
Degree $20$
Signature $[12, 4]$
Discriminant $5^{10}\cdot 19^{4}\cdot 97^{2}\cdot 1699^{4}$
Root discriminant $28.18$
Ramified primes $5, 19, 97, 1699$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T760

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 26, 66, -246, -294, 1462, 1929, -3182, -5747, 2351, 5045, -1888, -2014, 1229, 330, -414, 18, 66, -12, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 4*x^19 - 12*x^18 + 66*x^17 + 18*x^16 - 414*x^15 + 330*x^14 + 1229*x^13 - 2014*x^12 - 1888*x^11 + 5045*x^10 + 2351*x^9 - 5747*x^8 - 3182*x^7 + 1929*x^6 + 1462*x^5 - 294*x^4 - 246*x^3 + 66*x^2 + 26*x - 1)
 
gp: K = bnfinit(x^20 - 4*x^19 - 12*x^18 + 66*x^17 + 18*x^16 - 414*x^15 + 330*x^14 + 1229*x^13 - 2014*x^12 - 1888*x^11 + 5045*x^10 + 2351*x^9 - 5747*x^8 - 3182*x^7 + 1929*x^6 + 1462*x^5 - 294*x^4 - 246*x^3 + 66*x^2 + 26*x - 1, 1)
 

Normalized defining polynomial

\( x^{20} - 4 x^{19} - 12 x^{18} + 66 x^{17} + 18 x^{16} - 414 x^{15} + 330 x^{14} + 1229 x^{13} - 2014 x^{12} - 1888 x^{11} + 5045 x^{10} + 2351 x^{9} - 5747 x^{8} - 3182 x^{7} + 1929 x^{6} + 1462 x^{5} - 294 x^{4} - 246 x^{3} + 66 x^{2} + 26 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(99777227294923979346572265625=5^{10}\cdot 19^{4}\cdot 97^{2}\cdot 1699^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $28.18$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 19, 97, 1699$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{20158937869324864115563705717} a^{19} - \frac{2929223420435206991383237892}{20158937869324864115563705717} a^{18} + \frac{1526679010537356560783662065}{20158937869324864115563705717} a^{17} - \frac{5072877575234825863663000122}{20158937869324864115563705717} a^{16} + \frac{9357197248558936474608504317}{20158937869324864115563705717} a^{15} + \frac{2032052545615924481204138954}{20158937869324864115563705717} a^{14} + \frac{7058951006672355108787560439}{20158937869324864115563705717} a^{13} + \frac{5368526438452380689913489243}{20158937869324864115563705717} a^{12} + \frac{4288599713144886918500794784}{20158937869324864115563705717} a^{11} + \frac{7550335789922119600350709633}{20158937869324864115563705717} a^{10} - \frac{1173141924070126197171684188}{20158937869324864115563705717} a^{9} - \frac{5492265835122595840052933031}{20158937869324864115563705717} a^{8} + \frac{1134986893506540726649151699}{20158937869324864115563705717} a^{7} - \frac{2214030550527506968781206929}{20158937869324864115563705717} a^{6} + \frac{2330384204361941719345185644}{20158937869324864115563705717} a^{5} - \frac{516545948976567693568650936}{20158937869324864115563705717} a^{4} + \frac{3955198035087893848947281924}{20158937869324864115563705717} a^{3} + \frac{4714692725712912698357874088}{20158937869324864115563705717} a^{2} + \frac{9267550956152213984281229372}{20158937869324864115563705717} a - \frac{6465140621064855401545149125}{20158937869324864115563705717}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 17275243.9668 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T760:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 102400
The 130 conjugacy class representatives for t20n760 are not computed
Character table for t20n760 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 10.10.3256446753125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ R ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
5Data not computed
$19$19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.4.0.1$x^{4} - 2 x + 10$$1$$4$$0$$C_4$$[\ ]^{4}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
19.4.0.1$x^{4} - 2 x + 10$$1$$4$$0$$C_4$$[\ ]^{4}$
$97$97.4.0.1$x^{4} - x + 23$$1$$4$$0$$C_4$$[\ ]^{4}$
97.4.0.1$x^{4} - x + 23$$1$$4$$0$$C_4$$[\ ]^{4}$
97.4.2.2$x^{4} - 97 x^{2} + 47045$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
97.8.0.1$x^{8} - x + 84$$1$$8$$0$$C_8$$[\ ]^{8}$
1699Data not computed