Normalized defining polynomial
\( x^{20} - 4 x^{19} - 7 x^{18} + 13 x^{17} + 92 x^{16} - 30 x^{15} - 440 x^{14} + 117 x^{13} + 1004 x^{12} - 766 x^{11} - 1008 x^{10} + 2003 x^{9} - 186 x^{8} - 1124 x^{7} + 1591 x^{6} - 1264 x^{5} - 1927 x^{4} + 720 x^{3} + 607 x^{2} - 10 x - 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(976144737494384627696533203125=5^{13}\cdot 97^{2}\cdot 419^{2}\cdot 695771^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 97, 419, 695771$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{11} a^{18} + \frac{1}{11} a^{17} + \frac{1}{11} a^{16} - \frac{1}{11} a^{15} + \frac{2}{11} a^{14} - \frac{1}{11} a^{13} + \frac{1}{11} a^{12} - \frac{2}{11} a^{11} - \frac{4}{11} a^{10} + \frac{3}{11} a^{8} + \frac{5}{11} a^{7} + \frac{2}{11} a^{6} + \frac{1}{11} a^{5} - \frac{4}{11} a^{4} - \frac{5}{11} a^{3} + \frac{5}{11} a^{2} + \frac{4}{11} a + \frac{4}{11}$, $\frac{1}{11657741507503343724398721620419} a^{19} - \frac{172602100111033047892177233268}{11657741507503343724398721620419} a^{18} + \frac{3841795955247946048602701800089}{11657741507503343724398721620419} a^{17} - \frac{4178308040182510568378166141929}{11657741507503343724398721620419} a^{16} - \frac{5411218565591422807112705547679}{11657741507503343724398721620419} a^{15} + \frac{5390913894180946787685239628601}{11657741507503343724398721620419} a^{14} + \frac{5218422772524215532248479377261}{11657741507503343724398721620419} a^{13} + \frac{5760599975791493682616785658213}{11657741507503343724398721620419} a^{12} - \frac{2792569122245070921560292169323}{11657741507503343724398721620419} a^{11} - \frac{5815098559841144876873245998284}{11657741507503343724398721620419} a^{10} - \frac{1001854577182329410064550755254}{11657741507503343724398721620419} a^{9} + \frac{1779821036218387245319302888091}{11657741507503343724398721620419} a^{8} - \frac{31054619841490729764096906002}{1059794682500303974945338329129} a^{7} + \frac{976384262225150612722473960681}{11657741507503343724398721620419} a^{6} - \frac{467755557853468466466275750702}{1059794682500303974945338329129} a^{5} - \frac{4886679587922103559237184240848}{11657741507503343724398721620419} a^{4} - \frac{3270024831386211228449159207039}{11657741507503343724398721620419} a^{3} - \frac{771551621545849031946805724811}{11657741507503343724398721620419} a^{2} - \frac{2830726333786601025320909346512}{11657741507503343724398721620419} a - \frac{4253362749099440689083819689302}{11657741507503343724398721620419}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 50948419.4327 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 14745600 |
| The 378 conjugacy class representatives for t20n1039 are not computed |
| Character table for t20n1039 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.911025153125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.12.9.1 | $x^{12} - 10 x^{8} - 375 x^{4} - 2000$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| 97 | Data not computed | ||||||
| 419 | Data not computed | ||||||
| 695771 | Data not computed | ||||||