Normalized defining polynomial
\( x^{20} + 8 x^{18} - 37 x^{16} - 303 x^{14} + 260 x^{12} + 2035 x^{10} - 1966 x^{8} - 1267 x^{6} + 851 x^{4} - 113 x^{2} + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(95606831403792437215606148694016=2^{24}\cdot 11^{8}\cdot 113^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{70} a^{16} + \frac{3}{35} a^{14} - \frac{1}{2} a^{13} - \frac{3}{7} a^{12} - \frac{12}{35} a^{10} - \frac{1}{2} a^{9} + \frac{9}{35} a^{8} - \frac{16}{35} a^{6} - \frac{1}{2} a^{5} - \frac{2}{7} a^{4} + \frac{2}{7} a^{2} - \frac{1}{2} a + \frac{11}{70}$, $\frac{1}{70} a^{17} + \frac{3}{35} a^{15} - \frac{1}{2} a^{14} - \frac{3}{7} a^{13} - \frac{12}{35} a^{11} - \frac{1}{2} a^{10} + \frac{9}{35} a^{9} - \frac{16}{35} a^{7} - \frac{1}{2} a^{6} - \frac{2}{7} a^{5} + \frac{2}{7} a^{3} - \frac{1}{2} a^{2} + \frac{11}{70} a$, $\frac{1}{7533019615450} a^{18} + \frac{15668982491}{3766509807725} a^{16} - \frac{1}{2} a^{15} - \frac{1422070722897}{3766509807725} a^{14} - \frac{1749090139392}{3766509807725} a^{12} - \frac{1}{2} a^{11} + \frac{1537212802672}{3766509807725} a^{10} + \frac{1695192329758}{3766509807725} a^{8} - \frac{1}{2} a^{7} - \frac{983001356766}{3766509807725} a^{6} + \frac{37991936419}{753301961545} a^{4} - \frac{1}{2} a^{3} + \frac{1652925044961}{7533019615450} a^{2} + \frac{1808871565213}{3766509807725}$, $\frac{1}{7533019615450} a^{19} + \frac{15668982491}{3766509807725} a^{17} - \frac{1422070722897}{3766509807725} a^{15} + \frac{268329528941}{7533019615450} a^{13} - \frac{1}{2} a^{12} + \frac{1537212802672}{3766509807725} a^{11} - \frac{376125148209}{7533019615450} a^{9} - \frac{1}{2} a^{8} - \frac{983001356766}{3766509807725} a^{7} - \frac{677318088707}{1506603923090} a^{5} - \frac{1}{2} a^{4} + \frac{1652925044961}{7533019615450} a^{3} - \frac{148766677299}{7533019615450} a - \frac{1}{2}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2750010011.24 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 30720 |
| The 84 conjugacy class representatives for t20n561 are not computed |
| Character table for t20n561 is not computed |
Intermediate fields
| 5.5.6180196.1, 10.6.4888937292597248.1, 10.6.4888937292597248.2, 10.10.152779290393664.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.12.24.450 | $x^{12} - 4 x^{11} + 4 x^{10} + 8 x^{9} + 8 x^{8} + 8 x^{7} + 4 x^{6} + 4 x^{5} - 4 x^{4} + 4 x^{3} + 2 x^{2} + 4 x - 6$ | $12$ | $1$ | $24$ | 12T103 | $[4/3, 4/3, 8/3, 8/3, 3]_{3}^{2}$ | |
| $11$ | 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $113$ | 113.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 113.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 113.6.4.1 | $x^{6} + 3277 x^{3} + 12769000$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 113.6.4.1 | $x^{6} + 3277 x^{3} + 12769000$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |