Normalized defining polynomial
\( x^{20} - 10 x^{19} + 30 x^{18} - 10 x^{17} - 15 x^{16} - 210 x^{15} - 640 x^{14} + 5620 x^{13} - 9070 x^{12} - 3800 x^{11} + 25700 x^{10} - 23610 x^{9} - 6545 x^{8} + 26700 x^{7} - 17180 x^{6} - 80 x^{5} + 4940 x^{4} - 1800 x^{3} - 200 x^{2} + 200 x - 20 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(93588684800000000000000000000000=2^{38}\cdot 5^{23}\cdot 13^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{4} a^{16} - \frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{4} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2}$, $\frac{1}{4} a^{17} - \frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{4} a^{13} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{4} a^{18} - \frac{1}{2} a^{15} - \frac{1}{4} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{13012682267773333938132388952} a^{19} - \frac{80848626827319599150702925}{3253170566943333484533097238} a^{18} + \frac{99488235330694599342683304}{1626585283471666742266548619} a^{17} + \frac{5676234769042182505565205}{1626585283471666742266548619} a^{16} - \frac{4151132467914204434123902825}{13012682267773333938132388952} a^{15} - \frac{1543814474009034978476134085}{3253170566943333484533097238} a^{14} - \frac{1188069913299633098643374441}{6506341133886666969066194476} a^{13} + \frac{2748410135679783262913634797}{6506341133886666969066194476} a^{12} + \frac{230401380883746922246663443}{3253170566943333484533097238} a^{11} + \frac{469729368558227079709601663}{3253170566943333484533097238} a^{10} + \frac{573864121376783112029741873}{3253170566943333484533097238} a^{9} - \frac{639103433215253927585948077}{6506341133886666969066194476} a^{8} - \frac{4856185411411973314822347517}{13012682267773333938132388952} a^{7} - \frac{2844172305170517593493503867}{6506341133886666969066194476} a^{6} - \frac{1731664025870391620074388035}{6506341133886666969066194476} a^{5} + \frac{2452541528869310203947454025}{6506341133886666969066194476} a^{4} + \frac{806649683583358672172916137}{6506341133886666969066194476} a^{3} + \frac{1506892604710219787611680627}{3253170566943333484533097238} a^{2} + \frac{178340733901423746137022167}{3253170566943333484533097238} a + \frac{571171936814222606511325983}{3253170566943333484533097238}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1051794571.73 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for t20n790 are not computed |
| Character table for t20n790 is not computed |
Intermediate fields
| 5.3.162500.1, 10.6.135200000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | $20$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.20.56 | $x^{8} + 4 x^{6} + 4 x^{5} + 6 x^{4} + 10$ | $8$ | $1$ | $20$ | $Q_8:C_2$ | $[2, 3, 3]^{2}$ |
| 2.12.18.41 | $x^{12} + 14 x^{11} + 8 x^{10} - 12 x^{9} - 14 x^{8} + 8 x^{7} + 16 x^{6} + 16 x^{3} - 8$ | $4$ | $3$ | $18$ | 12T99 | $[2, 2, 2, 2]^{12}$ | |
| 5 | Data not computed | ||||||
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |