Normalized defining polynomial
\( x^{20} - 6 x^{19} - 8 x^{18} + 60 x^{17} + 134 x^{16} - 278 x^{15} - 1368 x^{14} + 1606 x^{13} + 5063 x^{12} - 7296 x^{11} - 7426 x^{10} + 14632 x^{9} + 4490 x^{8} - 12360 x^{7} - 472 x^{6} + 4468 x^{5} - 1504 x^{4} - 2358 x^{3} + 706 x^{2} + 1232 x + 185 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8943377831089127824259880583168=2^{30}\cdot 61^{5}\cdot 397^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{17} a^{18} + \frac{1}{17} a^{17} + \frac{8}{17} a^{16} + \frac{6}{17} a^{15} - \frac{7}{17} a^{14} - \frac{1}{17} a^{13} + \frac{7}{17} a^{12} - \frac{3}{17} a^{11} + \frac{5}{17} a^{10} + \frac{5}{17} a^{9} - \frac{2}{17} a^{8} - \frac{8}{17} a^{7} - \frac{4}{17} a^{6} + \frac{1}{17} a^{5} - \frac{8}{17} a^{4} + \frac{1}{17} a^{3} - \frac{5}{17} a^{2} - \frac{4}{17} a + \frac{4}{17}$, $\frac{1}{4229066456165559004386363677420295812791} a^{19} - \frac{102375878590927963230768707153861835208}{4229066456165559004386363677420295812791} a^{18} + \frac{687322299284963809754298347373649849742}{4229066456165559004386363677420295812791} a^{17} - \frac{319508628994814120898343930371744805404}{4229066456165559004386363677420295812791} a^{16} + \frac{2076906752441015197299074718995398242591}{4229066456165559004386363677420295812791} a^{15} + \frac{1090803352137938177392307711940189946178}{4229066456165559004386363677420295812791} a^{14} + \frac{1751651228479593122226450125230695968862}{4229066456165559004386363677420295812791} a^{13} - \frac{1615064569934143463898372439592244628784}{4229066456165559004386363677420295812791} a^{12} - \frac{301320506542739982663471130466821012822}{4229066456165559004386363677420295812791} a^{11} - \frac{301844073157852258206284407830834666811}{4229066456165559004386363677420295812791} a^{10} - \frac{596470363683259481304166362973077536051}{4229066456165559004386363677420295812791} a^{9} - \frac{1006733946664560794428559845985462756482}{4229066456165559004386363677420295812791} a^{8} + \frac{1614728645829368048834767994261857929198}{4229066456165559004386363677420295812791} a^{7} - \frac{1198562337126169607852605351911962355213}{4229066456165559004386363677420295812791} a^{6} + \frac{284083581149444991732720226392974336716}{4229066456165559004386363677420295812791} a^{5} - \frac{1834468796752874896825623288795698308236}{4229066456165559004386363677420295812791} a^{4} - \frac{106779540201508854310810889939881620401}{248768615068562294375668451612958577223} a^{3} + \frac{1732627600137897575052172471302709530639}{4229066456165559004386363677420295812791} a^{2} - \frac{695331712220347118325874522662953415320}{4229066456165559004386363677420295812791} a + \frac{1828127862366743383987418050264017311623}{4229066456165559004386363677420295812791}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 243095801.45 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1966080 |
| The 265 conjugacy class representatives for t20n989 are not computed |
| Character table for t20n989 is not computed |
Intermediate fields
| 5.5.24217.1, 10.8.600538203136.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | $16{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $61$ | 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.8.0.1 | $x^{8} - x + 17$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 397 | Data not computed | ||||||