Normalized defining polynomial
\( x^{20} - 25 x^{18} + 216 x^{16} - 940 x^{14} + 3318 x^{12} - 10296 x^{10} + 21832 x^{8} - 27353 x^{6} + 18774 x^{4} - 6237 x^{2} + 729 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8938372970405474936544619140625=5^{10}\cdot 37^{2}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 37, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{11} - \frac{1}{2} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{2} a^{4} - \frac{1}{6} a^{3} - \frac{1}{2} a^{2} - \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{6} a^{12} - \frac{1}{2} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{2} a^{5} - \frac{1}{6} a^{4} - \frac{1}{3} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{9} - \frac{1}{3} a^{7} - \frac{1}{2} a^{6} - \frac{1}{6} a^{5} + \frac{1}{6} a^{3} - \frac{1}{2}$, $\frac{1}{18} a^{14} + \frac{1}{18} a^{12} - \frac{1}{18} a^{10} - \frac{1}{2} a^{9} + \frac{1}{3} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{9} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{18} a^{15} + \frac{1}{18} a^{13} - \frac{1}{18} a^{11} - \frac{1}{6} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} + \frac{7}{18} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{18} a^{16} + \frac{1}{18} a^{12} - \frac{1}{9} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} + \frac{1}{6} a^{6} + \frac{2}{9} a^{4} - \frac{1}{2} a^{3} - \frac{2}{9} a^{2}$, $\frac{1}{54} a^{17} - \frac{1}{54} a^{15} - \frac{1}{18} a^{13} - \frac{1}{54} a^{11} + \frac{1}{9} a^{9} - \frac{1}{2} a^{8} + \frac{7}{54} a^{5} - \frac{1}{2} a^{4} + \frac{13}{54} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{886074041214} a^{18} + \frac{6386364443}{886074041214} a^{16} - \frac{825991837}{98452671246} a^{14} + \frac{12249636107}{886074041214} a^{12} + \frac{22464249235}{147679006869} a^{10} - \frac{1}{2} a^{9} - \frac{21889034435}{49226335623} a^{8} + \frac{150543678049}{886074041214} a^{6} - \frac{1}{2} a^{5} - \frac{289820820521}{886074041214} a^{4} - \frac{1}{2} a^{3} - \frac{2605626079}{98452671246} a^{2} - \frac{1}{2} a + \frac{1161287009}{5469592847}$, $\frac{1}{2658222123642} a^{19} + \frac{6386364443}{2658222123642} a^{17} - \frac{825991837}{295358013738} a^{15} + \frac{12249636107}{2658222123642} a^{13} + \frac{22464249235}{443037020607} a^{11} - \frac{93004404493}{295358013738} a^{9} + \frac{1036617719263}{2658222123642} a^{7} - \frac{1}{2} a^{6} - \frac{1175894861735}{2658222123642} a^{5} - \frac{1}{2} a^{4} - \frac{25915980851}{147679006869} a^{3} - \frac{1}{2} a^{2} - \frac{3147018829}{32817557082} a - \frac{1}{2}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 331083244.993 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 640 |
| The 40 conjugacy class representatives for t20n141 |
| Character table for t20n141 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.160801.1, 10.10.80803005003125.1, 10.6.956707579237.1, 10.6.2989711185115625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $37$ | 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 37.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 401 | Data not computed | ||||||