Normalized defining polynomial
\( x^{20} - 7 x^{19} - 11 x^{18} + 115 x^{17} - 30 x^{16} - 13 x^{15} + 261 x^{14} - 3648 x^{13} - 6726 x^{12} + 16105 x^{11} + 41691 x^{10} - 16920 x^{9} - 105171 x^{8} - 36763 x^{7} + 119101 x^{6} + 77179 x^{5} - 47558 x^{4} - 21454 x^{3} + 12236 x^{2} - 884 x - 131 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(88328352388962506007847515655488512=2^{10}\cdot 36497^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 36497$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{5} a^{18} + \frac{2}{5} a^{17} - \frac{2}{5} a^{16} - \frac{1}{5} a^{15} - \frac{1}{5} a^{14} + \frac{2}{5} a^{13} - \frac{2}{5} a^{12} + \frac{1}{5} a^{11} + \frac{1}{5} a^{10} + \frac{2}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{1}{5}$, $\frac{1}{61489070776491268774907042252306076779749825} a^{19} + \frac{1193599730587437592474890537044218719919759}{12297814155298253754981408450461215355949965} a^{18} - \frac{5317734605481326428083773908619578729496646}{61489070776491268774907042252306076779749825} a^{17} + \frac{13740650931204670895338285248937737287582098}{61489070776491268774907042252306076779749825} a^{16} + \frac{15061971010605358615366232597807614793479791}{61489070776491268774907042252306076779749825} a^{15} - \frac{5083136220390461162850806466197341274098381}{61489070776491268774907042252306076779749825} a^{14} - \frac{6811295259315870538425475412024207792541276}{61489070776491268774907042252306076779749825} a^{13} + \frac{191088154227524996234370547564760232028859}{2459562831059650750996281690092243071189993} a^{12} - \frac{4849316139937474987755966271116734808285226}{61489070776491268774907042252306076779749825} a^{11} + \frac{635129442507148170555530964365485584362831}{4729928521268559136531310942485082829211525} a^{10} + \frac{1326613548664453113745459479919498640027069}{4729928521268559136531310942485082829211525} a^{9} + \frac{29574346518256251907061005777295857871809299}{61489070776491268774907042252306076779749825} a^{8} - \frac{6550157268072627385451882379145676894444798}{61489070776491268774907042252306076779749825} a^{7} + \frac{146292307359519299956044505428064996465282}{4729928521268559136531310942485082829211525} a^{6} + \frac{11176723370832089856504763799553829018471283}{61489070776491268774907042252306076779749825} a^{5} + \frac{2570717489955220805681748896020772411321389}{12297814155298253754981408450461215355949965} a^{4} + \frac{29581910692306722976235656288093540690059507}{61489070776491268774907042252306076779749825} a^{3} + \frac{124114191075419929604756442560155126525494}{945985704253711827306262188497016565842305} a^{2} + \frac{11752778250119271760291854302882289547746006}{61489070776491268774907042252306076779749825} a + \frac{17650420363751484374577328700946250117777103}{61489070776491268774907042252306076779749825}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23630406219.6 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 74 conjugacy class representatives for t20n674 are not computed |
| Character table for t20n674 is not computed |
Intermediate fields
| 10.10.48615135735473.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.4 | $x^{10} - 5 x^{8} + 14 x^{6} - 22 x^{4} + 17 x^{2} - 37$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 36497 | Data not computed | ||||||