Normalized defining polynomial
\( x^{20} - 8 x^{19} + 8 x^{18} + 86 x^{17} - 192 x^{16} - 408 x^{15} + 1188 x^{14} + 1420 x^{13} - 3783 x^{12} - 4370 x^{11} + 6960 x^{10} + 9304 x^{9} - 6401 x^{8} - 9846 x^{7} + 495 x^{6} + 2853 x^{5} + 2816 x^{4} + 528 x^{3} - 1416 x^{2} - 128 x + 160 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(86258156629846197273288589507313=36497^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $36497$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{12} a^{17} + \frac{1}{3} a^{15} - \frac{1}{2} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{12} a^{9} - \frac{1}{6} a^{8} - \frac{1}{3} a^{6} - \frac{5}{12} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} + \frac{5}{12} a^{2} + \frac{1}{3}$, $\frac{1}{24} a^{18} + \frac{1}{6} a^{16} + \frac{1}{4} a^{15} + \frac{1}{3} a^{14} + \frac{1}{6} a^{12} + \frac{1}{6} a^{11} + \frac{1}{24} a^{10} - \frac{1}{12} a^{9} - \frac{1}{2} a^{8} + \frac{1}{3} a^{7} + \frac{7}{24} a^{6} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} + \frac{5}{24} a^{3} - \frac{1}{2} a^{2} + \frac{1}{6} a$, $\frac{1}{130769269416671229706848326064} a^{19} + \frac{52709499771651007393685653}{7264959412037290539269351448} a^{18} - \frac{177052601337752521474819189}{32692317354167807426712081516} a^{17} + \frac{1943386570237624227387237673}{21794878236111871617808054344} a^{16} - \frac{363315425392081657545490495}{1210826568672881756544891908} a^{15} - \frac{1209589533527911273363730611}{2724359779513983952226006793} a^{14} + \frac{99497818807911354994334131}{10897439118055935808904027172} a^{13} + \frac{9422695500158088132121074169}{32692317354167807426712081516} a^{12} + \frac{20932428833478685625651917409}{130769269416671229706848326064} a^{11} + \frac{1873720790809248307319533466}{8173079338541951856678020379} a^{10} + \frac{2777926825812139055260930615}{8173079338541951856678020379} a^{9} + \frac{560510075240271147890522921}{2724359779513983952226006793} a^{8} - \frac{47489315098072620921635598497}{130769269416671229706848326064} a^{7} + \frac{2701608155965675493538923053}{16346158677083903713356040758} a^{6} + \frac{42518954595667058301511337599}{130769269416671229706848326064} a^{5} - \frac{12446997841762608497872538773}{130769269416671229706848326064} a^{4} - \frac{478297806485318729547122053}{7264959412037290539269351448} a^{3} + \frac{3425408835580501628024823059}{10897439118055935808904027172} a^{2} - \frac{211110502751860231891914833}{1816239853009322634817337862} a + \frac{16284837795641068597674256}{8173079338541951856678020379}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1030150114.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 74 conjugacy class representatives for t20n674 are not computed |
| Character table for t20n674 is not computed |
Intermediate fields
| 10.10.48615135735473.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 36497 | Data not computed | ||||||