Normalized defining polynomial
\( x^{20} - 7 x^{18} - 14 x^{17} + 13 x^{16} + 62 x^{15} - 91 x^{14} - 99 x^{13} + 327 x^{12} + 106 x^{11} - 374 x^{10} - 207 x^{9} + 179 x^{8} + 198 x^{7} - 77 x^{6} - 62 x^{5} + 52 x^{4} + 7 x^{3} - 14 x^{2} + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(82943305909096044672939453125=5^{10}\cdot 13^{4}\cdot 29^{5}\cdot 347^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13, 29, 347$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{723931} a^{18} + \frac{194234}{723931} a^{17} + \frac{336558}{723931} a^{16} - \frac{852}{3107} a^{15} + \frac{160174}{723931} a^{14} - \frac{245497}{723931} a^{13} + \frac{328564}{723931} a^{12} + \frac{309632}{723931} a^{11} + \frac{10557}{723931} a^{10} + \frac{71307}{723931} a^{9} - \frac{143547}{723931} a^{8} - \frac{38089}{723931} a^{7} - \frac{66036}{723931} a^{6} + \frac{117456}{723931} a^{5} + \frac{121034}{723931} a^{4} + \frac{112841}{723931} a^{3} - \frac{63190}{723931} a^{2} + \frac{117888}{723931} a + \frac{228577}{723931}$, $\frac{1}{1475558876129} a^{19} - \frac{874207}{1475558876129} a^{18} + \frac{576618176151}{1475558876129} a^{17} - \frac{519306221814}{1475558876129} a^{16} + \frac{516158157316}{1475558876129} a^{15} + \frac{712512286575}{1475558876129} a^{14} - \frac{17237047450}{113504528933} a^{13} + \frac{501018743632}{1475558876129} a^{12} - \frac{181763224531}{1475558876129} a^{11} - \frac{136296552582}{1475558876129} a^{10} - \frac{480093908419}{1475558876129} a^{9} - \frac{314903305212}{1475558876129} a^{8} + \frac{425751786389}{1475558876129} a^{7} - \frac{8137714201}{113504528933} a^{6} - \frac{133975536727}{1475558876129} a^{5} + \frac{21404497967}{113504528933} a^{4} - \frac{283313837905}{1475558876129} a^{3} - \frac{34176864985}{113504528933} a^{2} + \frac{671500907984}{1475558876129} a + \frac{162820025258}{1475558876129}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16712140.3216 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 960 |
| The 35 conjugacy class representatives for t20n174 |
| Character table for t20n174 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.725.1, 5.3.4511.1, 10.6.63591003125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $29$ | 29.10.5.2 | $x^{10} - 707281 x^{2} + 225622639$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 29.10.0.1 | $x^{10} + x^{2} - 2 x + 2$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 347 | Data not computed | ||||||