Properties

Label 20.12.8230673022...1609.3
Degree $20$
Signature $[12, 4]$
Discriminant $11^{18}\cdot 23^{6}$
Root discriminant $22.17$
Ramified primes $11, 23$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T314

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -8, 6, 75, -134, -132, 468, -235, -393, 626, -199, -289, 280, 13, -141, 44, 71, -84, 41, -10, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 10*x^19 + 41*x^18 - 84*x^17 + 71*x^16 + 44*x^15 - 141*x^14 + 13*x^13 + 280*x^12 - 289*x^11 - 199*x^10 + 626*x^9 - 393*x^8 - 235*x^7 + 468*x^6 - 132*x^5 - 134*x^4 + 75*x^3 + 6*x^2 - 8*x + 1)
 
gp: K = bnfinit(x^20 - 10*x^19 + 41*x^18 - 84*x^17 + 71*x^16 + 44*x^15 - 141*x^14 + 13*x^13 + 280*x^12 - 289*x^11 - 199*x^10 + 626*x^9 - 393*x^8 - 235*x^7 + 468*x^6 - 132*x^5 - 134*x^4 + 75*x^3 + 6*x^2 - 8*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 10 x^{19} + 41 x^{18} - 84 x^{17} + 71 x^{16} + 44 x^{15} - 141 x^{14} + 13 x^{13} + 280 x^{12} - 289 x^{11} - 199 x^{10} + 626 x^{9} - 393 x^{8} - 235 x^{7} + 468 x^{6} - 132 x^{5} - 134 x^{4} + 75 x^{3} + 6 x^{2} - 8 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(823067302269314181883621609=11^{18}\cdot 23^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $22.17$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $11, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{23} a^{16} - \frac{8}{23} a^{15} - \frac{11}{23} a^{14} + \frac{10}{23} a^{13} + \frac{10}{23} a^{12} - \frac{2}{23} a^{11} + \frac{11}{23} a^{10} + \frac{5}{23} a^{9} - \frac{7}{23} a^{8} - \frac{3}{23} a^{7} + \frac{10}{23} a^{6} + \frac{7}{23} a^{5} + \frac{6}{23} a^{4} + \frac{6}{23} a^{3} + \frac{11}{23} a^{2} - \frac{7}{23}$, $\frac{1}{23} a^{17} - \frac{6}{23} a^{15} - \frac{9}{23} a^{14} - \frac{2}{23} a^{13} + \frac{9}{23} a^{12} - \frac{5}{23} a^{11} + \frac{1}{23} a^{10} + \frac{10}{23} a^{9} + \frac{10}{23} a^{8} + \frac{9}{23} a^{7} - \frac{5}{23} a^{6} - \frac{7}{23} a^{5} + \frac{8}{23} a^{4} - \frac{10}{23} a^{3} - \frac{4}{23} a^{2} - \frac{7}{23} a - \frac{10}{23}$, $\frac{1}{529} a^{18} - \frac{9}{529} a^{17} + \frac{3}{529} a^{16} + \frac{180}{529} a^{15} + \frac{164}{529} a^{14} - \frac{251}{529} a^{13} + \frac{142}{529} a^{12} + \frac{28}{529} a^{11} - \frac{107}{529} a^{10} - \frac{150}{529} a^{9} + \frac{109}{529} a^{8} - \frac{205}{529} a^{7} - \frac{56}{529} a^{6} - \frac{165}{529} a^{5} - \frac{189}{529} a^{4} + \frac{232}{529} a^{3} - \frac{240}{529} a^{2} - \frac{16}{529} a + \frac{73}{529}$, $\frac{1}{12167} a^{19} + \frac{2}{12167} a^{18} + \frac{65}{12167} a^{17} + \frac{167}{12167} a^{16} + \frac{488}{12167} a^{15} - \frac{2564}{12167} a^{14} + \frac{3476}{12167} a^{13} + \frac{2579}{12167} a^{12} - \frac{1570}{12167} a^{11} - \frac{1143}{12167} a^{10} + \frac{200}{529} a^{9} - \frac{6067}{12167} a^{8} + \frac{5624}{12167} a^{7} - \frac{5749}{12167} a^{6} + \frac{3424}{12167} a^{5} - \frac{2951}{12167} a^{4} - \frac{632}{12167} a^{3} + \frac{426}{12167} a^{2} + \frac{1944}{12167} a + \frac{2689}{12167}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1532218.96034 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T314:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 5120
The 44 conjugacy class representatives for t20n314
Character table for t20n314 is not computed

Intermediate fields

\(\Q(\zeta_{11})^+\), 10.8.1247354328539.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
11Data not computed
$23$$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
23.2.1.2$x^{2} + 46$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.4.3.2$x^{4} - 23$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
23.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$