Normalized defining polynomial
\( x^{20} - x^{19} - 16 x^{18} + 22 x^{17} + 96 x^{16} - 184 x^{15} - 293 x^{14} + 814 x^{13} + 493 x^{12} - 2154 x^{11} - 276 x^{10} + 3939 x^{9} - 402 x^{8} - 5522 x^{7} - 162 x^{6} + 4485 x^{5} + 909 x^{4} - 1760 x^{3} - 537 x^{2} + 262 x + 89 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(823067302269314181883621609=11^{18}\cdot 23^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{23} a^{16} - \frac{8}{23} a^{15} + \frac{10}{23} a^{14} - \frac{11}{23} a^{13} - \frac{11}{23} a^{12} - \frac{1}{23} a^{11} + \frac{8}{23} a^{10} - \frac{10}{23} a^{9} + \frac{2}{23} a^{8} - \frac{6}{23} a^{7} - \frac{1}{23} a^{6} + \frac{9}{23} a^{5} - \frac{2}{23} a^{4} - \frac{7}{23} a^{2} - \frac{7}{23} a - \frac{2}{23}$, $\frac{1}{23} a^{17} - \frac{8}{23} a^{15} - \frac{7}{23} a^{13} + \frac{3}{23} a^{12} + \frac{8}{23} a^{10} - \frac{9}{23} a^{9} + \frac{10}{23} a^{8} - \frac{3}{23} a^{7} + \frac{1}{23} a^{6} + \frac{1}{23} a^{5} + \frac{7}{23} a^{4} - \frac{7}{23} a^{3} + \frac{6}{23} a^{2} + \frac{11}{23} a + \frac{7}{23}$, $\frac{1}{23} a^{18} + \frac{5}{23} a^{15} + \frac{4}{23} a^{14} + \frac{7}{23} a^{13} + \frac{4}{23} a^{12} + \frac{9}{23} a^{10} - \frac{1}{23} a^{9} - \frac{10}{23} a^{8} - \frac{1}{23} a^{7} - \frac{7}{23} a^{6} + \frac{10}{23} a^{5} + \frac{6}{23} a^{3} + \frac{1}{23} a^{2} - \frac{3}{23} a + \frac{7}{23}$, $\frac{1}{566200248020573} a^{19} - \frac{8110047217559}{566200248020573} a^{18} + \frac{9494254580893}{566200248020573} a^{17} - \frac{10270135857797}{566200248020573} a^{16} - \frac{280260572239839}{566200248020573} a^{15} + \frac{41855530800754}{566200248020573} a^{14} + \frac{241052227037496}{566200248020573} a^{13} + \frac{273959707010027}{566200248020573} a^{12} + \frac{230038781487439}{566200248020573} a^{11} - \frac{232822716631192}{566200248020573} a^{10} - \frac{13323706624767}{566200248020573} a^{9} + \frac{121275369482952}{566200248020573} a^{8} - \frac{181201233070494}{566200248020573} a^{7} + \frac{173159464958790}{566200248020573} a^{6} + \frac{276221814358130}{566200248020573} a^{5} + \frac{57297238934315}{566200248020573} a^{4} + \frac{7496319427074}{24617402087851} a^{3} + \frac{8254553770689}{566200248020573} a^{2} - \frac{250527669312567}{566200248020573} a - \frac{1314753605574}{6361800539557}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1478677.49853 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_2^4:C_5$ (as 20T74):
| A solvable group of order 320 |
| The 32 conjugacy class representatives for $C_2^2\times C_2^4:C_5$ |
| Character table for $C_2^2\times C_2^4:C_5$ is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.8.1247354328539.1, 10.6.54232796893.1, 10.8.2608104505127.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |