Normalized defining polynomial
\( x^{20} - 8 x^{19} + 6 x^{18} + 248 x^{17} - 965 x^{16} - 2342 x^{15} + 5142 x^{14} + 15514 x^{13} + 69492 x^{12} + 8758 x^{11} - 572575 x^{10} - 388182 x^{9} + 1437004 x^{8} + 385692 x^{7} - 2938609 x^{6} + 1134628 x^{5} + 5654272 x^{4} - 1544872 x^{3} - 5110428 x^{2} + 468272 x + 1494004 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8164704108216363029154042909041980029184=2^{8}\cdot 11^{8}\cdot 29^{6}\cdot 97^{2}\cdot 113^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $98.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 29, 97, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{15} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{2} a^{9} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2}$, $\frac{1}{220} a^{17} - \frac{7}{110} a^{16} + \frac{17}{110} a^{15} - \frac{4}{55} a^{14} + \frac{23}{220} a^{13} - \frac{3}{22} a^{12} + \frac{12}{55} a^{11} + \frac{6}{55} a^{10} - \frac{9}{22} a^{9} - \frac{27}{55} a^{8} + \frac{37}{220} a^{7} + \frac{16}{55} a^{6} + \frac{9}{22} a^{4} + \frac{9}{44} a^{3} - \frac{13}{55} a^{2} + \frac{47}{110} a + \frac{43}{110}$, $\frac{1}{2420} a^{18} - \frac{1}{2420} a^{17} + \frac{73}{605} a^{16} - \frac{31}{605} a^{15} - \frac{59}{484} a^{14} - \frac{391}{2420} a^{13} - \frac{113}{605} a^{12} + \frac{52}{605} a^{11} - \frac{109}{1210} a^{10} - \frac{529}{1210} a^{9} + \frac{943}{2420} a^{8} + \frac{87}{484} a^{7} - \frac{12}{605} a^{6} + \frac{54}{121} a^{5} + \frac{177}{484} a^{4} + \frac{423}{2420} a^{3} + \frac{479}{1210} a^{2} - \frac{223}{605} a + \frac{339}{1210}$, $\frac{1}{3356124191350072137817438811913286647803492665181272316164745140} a^{19} - \frac{44280642763510784148400069387181315586146937683463078103149}{479446313050010305402491258844755235400498952168753188023535020} a^{18} - \frac{1911102998727205956624945596571608723997027635874915612440513}{1678062095675036068908719405956643323901746332590636158082372570} a^{17} + \frac{162070667873743246785071355648311066399958836495530283762143307}{3356124191350072137817438811913286647803492665181272316164745140} a^{16} - \frac{169942975395071187370575142479501261965759265299596362087341873}{839031047837518034454359702978321661950873166295318079041186285} a^{15} - \frac{28900982576924826960201806194803661797811079884376271100550714}{839031047837518034454359702978321661950873166295318079041186285} a^{14} + \frac{105398829457894047899720785970576061095399697192836323309115837}{671224838270014427563487762382657329560698533036254463232949028} a^{13} - \frac{32930028843771218001228753625738742364770896618144817323276129}{152551099606821460809883582359694847627431484780966923462033870} a^{12} + \frac{72863222874436055658056466333663780324465450935294536383499744}{839031047837518034454359702978321661950873166295318079041186285} a^{11} - \frac{359583927332288491257551156908963748329378366704163237499749001}{1678062095675036068908719405956643323901746332590636158082372570} a^{10} + \frac{1041889044595210382141421835119200392901204263328262041009747519}{3356124191350072137817438811913286647803492665181272316164745140} a^{9} - \frac{449163328488487662345341478909066717722791438033528788265494501}{3356124191350072137817438811913286647803492665181272316164745140} a^{8} - \frac{299488163761035157604775668155561853282128482395164477287474312}{839031047837518034454359702978321661950873166295318079041186285} a^{7} + \frac{1255593349594509646924371719588803746368466410949134497119934811}{3356124191350072137817438811913286647803492665181272316164745140} a^{6} + \frac{80393070330309959749817134784210502764565217365953550450799328}{167806209567503606890871940595664332390174633259063615808237257} a^{5} - \frac{3498659350279631958953663943096633560553992790803554051544248}{76275549803410730404941791179847423813715742390483461731016935} a^{4} - \frac{85760055873957213079169060365786878769980161783172907316768439}{479446313050010305402491258844755235400498952168753188023535020} a^{3} - \frac{40888243837774868019588805322057525440576643901847112336575551}{119861578262502576350622814711188808850124738042188297005883755} a^{2} - \frac{312089695968764707196092954511127835018026311720391671132212949}{1678062095675036068908719405956643323901746332590636158082372570} a + \frac{176384914982811424952451935610681936270827994962290614849509467}{1678062095675036068908719405956643323901746332590636158082372570}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1920529386450 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 90 conjugacy class representatives for t20n685 are not computed |
| Character table for t20n685 is not computed |
Intermediate fields
| 5.5.6180196.1, 10.10.1107649855354064.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $11$ | 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.6.0.1 | $x^{6} - x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 29.6.3.2 | $x^{6} - 841 x^{2} + 73167$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 97 | Data not computed | ||||||
| $113$ | 113.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 113.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 113.6.4.1 | $x^{6} + 3277 x^{3} + 12769000$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 113.6.4.1 | $x^{6} + 3277 x^{3} + 12769000$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |