Normalized defining polynomial
\( x^{20} - 533 x^{18} - 4034 x^{17} + 92064 x^{16} + 1479745 x^{15} - 375986 x^{14} - 169175375 x^{13} - 1373161083 x^{12} + 1665336900 x^{11} + 102020618143 x^{10} + 733101651678 x^{9} + 1187534134673 x^{8} - 18774067823277 x^{7} - 184077684732574 x^{6} - 916247209555166 x^{5} - 2978358234313399 x^{4} - 6600332540709378 x^{3} - 9726583452943970 x^{2} - 8669600655269047 x - 3558137714849521 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8115473275425993676513111964179251562561388243938577254913=13^{6}\cdot 61^{5}\cdot 397^{5}\cdot 709^{3}\cdot 8273789^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $786.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 61, 397, 709, 8273789$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{26} a^{16} + \frac{3}{26} a^{15} - \frac{9}{26} a^{14} - \frac{11}{26} a^{13} - \frac{11}{26} a^{12} - \frac{1}{26} a^{11} + \frac{4}{13} a^{10} - \frac{1}{13} a^{9} - \frac{3}{26} a^{8} + \frac{5}{13} a^{7} + \frac{9}{26} a^{6} + \frac{5}{13} a^{4} - \frac{5}{26} a^{3} + \frac{1}{26} a^{2} - \frac{7}{26} a + \frac{3}{13}$, $\frac{1}{26} a^{17} - \frac{5}{26} a^{15} + \frac{3}{26} a^{14} + \frac{9}{26} a^{13} - \frac{7}{26} a^{12} - \frac{1}{13} a^{11} - \frac{1}{2} a^{10} + \frac{3}{26} a^{9} - \frac{7}{26} a^{8} - \frac{4}{13} a^{7} - \frac{1}{26} a^{6} - \frac{3}{26} a^{5} - \frac{9}{26} a^{4} - \frac{5}{13} a^{3} + \frac{3}{26} a^{2} - \frac{6}{13} a - \frac{5}{26}$, $\frac{1}{629642} a^{18} - \frac{5}{314821} a^{17} - \frac{229}{314821} a^{16} - \frac{23819}{314821} a^{15} + \frac{5538}{24217} a^{14} - \frac{74777}{314821} a^{13} - \frac{276399}{629642} a^{12} + \frac{20744}{314821} a^{11} + \frac{68841}{629642} a^{10} - \frac{314563}{629642} a^{9} - \frac{134013}{629642} a^{8} - \frac{117109}{629642} a^{7} + \frac{115446}{314821} a^{6} - \frac{87287}{629642} a^{5} + \frac{59304}{314821} a^{4} + \frac{36570}{314821} a^{3} - \frac{29147}{629642} a^{2} + \frac{143850}{314821} a - \frac{48290}{314821}$, $\frac{1}{101082802129370489898771539937815099847281464470333578108302826193043615987030900840318} a^{19} + \frac{658995211762494690363132994750677463698232769750190874273715300132661326858285}{101082802129370489898771539937815099847281464470333578108302826193043615987030900840318} a^{18} - \frac{1021701669795575648522594046012093088393717360190653301693196378939891323521676668025}{101082802129370489898771539937815099847281464470333578108302826193043615987030900840318} a^{17} + \frac{1056742446732453007175139168963738220216008670180945562816498183122020339389108126387}{101082802129370489898771539937815099847281464470333578108302826193043615987030900840318} a^{16} - \frac{25062147323279396555179161996344649376875597733715515816969100872482900491368332739615}{101082802129370489898771539937815099847281464470333578108302826193043615987030900840318} a^{15} - \frac{17452913896814819139078106148747620123959167493352920551808843422781179515302130711771}{101082802129370489898771539937815099847281464470333578108302826193043615987030900840318} a^{14} - \frac{23877071052670317213842673893846435701374430731866856854590759849031067101399439584819}{50541401064685244949385769968907549923640732235166789054151413096521807993515450420159} a^{13} + \frac{9792286081434019941121294113212854874544964707481356235324251388082167224894231255049}{50541401064685244949385769968907549923640732235166789054151413096521807993515450420159} a^{12} + \frac{48645161927690176311634922782453067495697023312885988946776358022805047035544762889569}{101082802129370489898771539937815099847281464470333578108302826193043615987030900840318} a^{11} + \frac{2359854142504129687713092523297866175483516391220294134120503205088800750840687596812}{50541401064685244949385769968907549923640732235166789054151413096521807993515450420159} a^{10} - \frac{35048856674728167434214356291398790303077696137797043191340333291342245243565366326903}{101082802129370489898771539937815099847281464470333578108302826193043615987030900840318} a^{9} + \frac{22497088388909006753997308323183996711457374104525774095056079630993605566133120393082}{50541401064685244949385769968907549923640732235166789054151413096521807993515450420159} a^{8} - \frac{19510470357779793774076319080622604037943108225243939139940173823978327847987310036042}{50541401064685244949385769968907549923640732235166789054151413096521807993515450420159} a^{7} + \frac{49631583631839500902020191099486496283769523167649547376147958520634585580964036900397}{101082802129370489898771539937815099847281464470333578108302826193043615987030900840318} a^{6} + \frac{25890382748852085949022332756600909549161541514442884921657954076644840673222856698027}{101082802129370489898771539937815099847281464470333578108302826193043615987030900840318} a^{5} + \frac{22007657269417520181475728656772203163134857110710421848170816219054549463325351108615}{101082802129370489898771539937815099847281464470333578108302826193043615987030900840318} a^{4} + \frac{10572900746908915757618873060490314588381784897346537843413788398902160457854517671402}{50541401064685244949385769968907549923640732235166789054151413096521807993515450420159} a^{3} + \frac{20358570745563336631208538961925177567502445663370632189977686274199662643883096261578}{50541401064685244949385769968907549923640732235166789054151413096521807993515450420159} a^{2} - \frac{1914656917959610063932001026751496451253627185354123999463433931707642828740164251799}{3887800081898864996106597689915965378741594787320522234934724084347831384116573109243} a + \frac{20137307381127215158933023175564107505711929401913575412691220040313398135491510770567}{50541401064685244949385769968907549923640732235166789054151413096521807993515450420159}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1174242184660000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1966080 |
| The 265 conjugacy class representatives for t20n993 are not computed |
| Character table for t20n993 is not computed |
Intermediate fields
| 5.5.24217.1, 10.10.581404065898919834441.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | $20$ | $16{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 13.8.6.2 | $x^{8} + 39 x^{4} + 676$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $61$ | $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.1.1 | $x^{2} - 61$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.1.1 | $x^{2} - 61$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.4.3.1 | $x^{4} - 61$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 397 | Data not computed | ||||||
| 709 | Data not computed | ||||||
| 8273789 | Data not computed | ||||||