Normalized defining polynomial
\( x^{20} - 23 x^{18} + 178 x^{16} - 675 x^{14} + 2205 x^{12} - 7723 x^{10} + 16638 x^{8} - 18828 x^{6} + 15008 x^{4} - 5296 x^{2} + 288 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(79452140393687668031327725191168=2^{15}\cdot 3^{8}\cdot 883^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 883$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{70} a^{12} + \frac{6}{35} a^{10} + \frac{9}{70} a^{8} + \frac{6}{35} a^{6} + \frac{5}{14} a^{4} - \frac{1}{2} a^{3} - \frac{12}{35} a^{2} + \frac{6}{35}$, $\frac{1}{70} a^{13} + \frac{6}{35} a^{11} + \frac{9}{70} a^{9} + \frac{6}{35} a^{7} + \frac{5}{14} a^{5} - \frac{1}{2} a^{4} - \frac{12}{35} a^{3} + \frac{6}{35} a$, $\frac{1}{140} a^{14} - \frac{1}{140} a^{12} + \frac{1}{5} a^{10} - \frac{1}{4} a^{8} - \frac{61}{140} a^{6} - \frac{69}{140} a^{4} + \frac{11}{35} a^{2} - \frac{4}{35}$, $\frac{1}{140} a^{15} - \frac{1}{140} a^{13} + \frac{1}{5} a^{11} - \frac{1}{4} a^{9} + \frac{9}{140} a^{7} - \frac{1}{2} a^{6} - \frac{69}{140} a^{5} - \frac{1}{2} a^{4} - \frac{13}{70} a^{3} - \frac{1}{2} a^{2} - \frac{4}{35} a$, $\frac{1}{1400} a^{16} - \frac{3}{1400} a^{14} + \frac{3}{700} a^{12} + \frac{181}{1400} a^{10} - \frac{347}{1400} a^{8} - \frac{47}{280} a^{6} - \frac{1}{2} a^{5} + \frac{1}{700} a^{4} - \frac{46}{175} a^{2} + \frac{3}{175}$, $\frac{1}{1400} a^{17} - \frac{3}{1400} a^{15} + \frac{3}{700} a^{13} + \frac{181}{1400} a^{11} - \frac{347}{1400} a^{9} - \frac{47}{280} a^{7} - \frac{1}{2} a^{6} + \frac{1}{700} a^{5} - \frac{46}{175} a^{3} + \frac{3}{175} a$, $\frac{1}{2034004641200} a^{18} - \frac{659360349}{2034004641200} a^{16} + \frac{613572033}{254250580150} a^{14} + \frac{2643137289}{406800928240} a^{12} - \frac{13095505793}{2034004641200} a^{10} - \frac{181605319333}{2034004641200} a^{8} - \frac{12723853221}{72643022900} a^{6} + \frac{4336543643}{101700232060} a^{4} - \frac{1}{2} a^{3} - \frac{17125727301}{254250580150} a^{2} + \frac{6387263556}{127125290075}$, $\frac{1}{6102013923600} a^{19} + \frac{793500109}{6102013923600} a^{17} + \frac{1507859947}{610201392360} a^{15} - \frac{7217654849}{2034004641200} a^{13} + \frac{4106488739}{81360185648} a^{11} - \frac{438761620399}{6102013923600} a^{9} + \frac{2413884621}{145286045800} a^{7} - \frac{1}{2} a^{6} + \frac{32894774163}{508501160300} a^{5} - \frac{1}{2} a^{4} + \frac{337372224451}{762751740450} a^{3} - \frac{1}{2} a^{2} - \frac{27754957207}{381375870225} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1322406974.07 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 188 conjugacy class representatives for t20n968 are not computed |
| Character table for t20n968 is not computed |
Intermediate fields
| 5.5.7017201.1, 10.6.49241109874401.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.15.3 | $x^{10} - 18 x^{8} + 216 x^{6} - 304 x^{4} + 656 x^{2} - 544$ | $2$ | $5$ | $15$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 3]^{5}$ | |
| 3 | Data not computed | ||||||
| 883 | Data not computed | ||||||