Normalized defining polynomial
\( x^{20} - 4 x^{19} + 2 x^{18} + 100 x^{17} - 180 x^{16} - 604 x^{15} + 476 x^{14} + 2116 x^{13} + 572 x^{12} - 2624 x^{11} - 2052 x^{10} - 1864 x^{9} - 3728 x^{8} - 1072 x^{7} + 12560 x^{6} + 10576 x^{5} - 3872 x^{4} - 4208 x^{3} + 160 x^{2} + 320 x - 16 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7833703334849737480841063435337728=2^{24}\cdot 13^{14}\cdot 17^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{4} a^{12}$, $\frac{1}{4} a^{13}$, $\frac{1}{8} a^{14} - \frac{1}{4} a^{9} - \frac{1}{2} a^{4}$, $\frac{1}{8} a^{15}$, $\frac{1}{8} a^{16}$, $\frac{1}{8} a^{17}$, $\frac{1}{104} a^{18} - \frac{1}{52} a^{16} + \frac{1}{104} a^{15} + \frac{1}{104} a^{14} - \frac{3}{52} a^{13} + \frac{3}{52} a^{12} + \frac{3}{52} a^{11} - \frac{11}{52} a^{9} - \frac{1}{13} a^{8} + \frac{3}{26} a^{7} - \frac{1}{13} a^{6} - \frac{1}{13} a^{5} + \frac{7}{26} a^{4} + \frac{1}{13} a^{3} + \frac{3}{13} a + \frac{6}{13}$, $\frac{1}{32571744599087950596178170130864} a^{19} - \frac{24148236805405712064389315561}{16285872299543975298089085065432} a^{18} - \frac{148433102042587019621847843681}{8142936149771987649044542532716} a^{17} + \frac{300904051172537097986701334381}{8142936149771987649044542532716} a^{16} - \frac{765919360846113024649626050995}{16285872299543975298089085065432} a^{15} - \frac{6244739052270156694458568081}{16285872299543975298089085065432} a^{14} - \frac{250195720086081455986307190753}{8142936149771987649044542532716} a^{13} - \frac{722562599390674722891772418779}{8142936149771987649044542532716} a^{12} + \frac{90218904342044100799486939845}{2035734037442996912261135633179} a^{11} - \frac{63018069515385837626977219639}{8142936149771987649044542532716} a^{10} - \frac{1602603389683076649686971378587}{8142936149771987649044542532716} a^{9} - \frac{740536790721903336323273843065}{4071468074885993824522271266358} a^{8} - \frac{554273318600286911266986873783}{4071468074885993824522271266358} a^{7} + \frac{73109305607465740023114455331}{4071468074885993824522271266358} a^{6} + \frac{927984829408640503552291668799}{4071468074885993824522271266358} a^{5} + \frac{95850172641387358227394275201}{2035734037442996912261135633179} a^{4} + \frac{857889149034582973796583499744}{2035734037442996912261135633179} a^{3} - \frac{621770060887258885885849165865}{2035734037442996912261135633179} a^{2} + \frac{921656682938492308822601936410}{2035734037442996912261135633179} a - \frac{285381168395323447045930464043}{2035734037442996912261135633179}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8590364849.08 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 126 conjugacy class representatives for t20n803 are not computed |
| Character table for t20n803 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 5.5.10158928.1, 10.10.1341649635419392.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | R | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.6.5.3 | $x^{6} - 208$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 13.6.5.3 | $x^{6} - 208$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.6.5.1 | $x^{6} - 17$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |