Normalized defining polynomial
\( x^{20} - 275 x^{18} + 23171 x^{16} - 248166 x^{14} - 50014572 x^{12} + 1810191294 x^{10} + 5037137676 x^{8} - 843346065511 x^{6} + 5645857496273 x^{4} + 34720939507619 x^{2} + 100853031438721 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(782003552575825933249006620682240000000000=2^{20}\cdot 5^{10}\cdot 3169^{4}\cdot 27517559^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $124.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 3169, 27517559$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3169} a^{14} - \frac{275}{3169} a^{12} + \frac{988}{3169} a^{10} - \frac{984}{3169} a^{8} - \frac{1414}{3169} a^{6} + \frac{1452}{3169} a^{4} - \frac{500}{3169} a^{2}$, $\frac{1}{3169} a^{15} - \frac{275}{3169} a^{13} + \frac{988}{3169} a^{11} - \frac{984}{3169} a^{9} - \frac{1414}{3169} a^{7} + \frac{1452}{3169} a^{5} - \frac{500}{3169} a^{3}$, $\frac{1}{10042561} a^{16} - \frac{275}{10042561} a^{14} + \frac{23171}{10042561} a^{12} - \frac{248166}{10042561} a^{10} + \frac{198233}{10042561} a^{8} + \frac{2530314}{10042561} a^{6} - \frac{4227946}{10042561} a^{4} - \frac{606}{3169} a^{2}$, $\frac{1}{10042561} a^{17} - \frac{275}{10042561} a^{15} + \frac{23171}{10042561} a^{13} - \frac{248166}{10042561} a^{11} + \frac{198233}{10042561} a^{9} + \frac{2530314}{10042561} a^{7} - \frac{4227946}{10042561} a^{5} - \frac{606}{3169} a^{3}$, $\frac{1}{29585832997862312006671926699406945533867827688156193174001} a^{18} + \frac{426122810514496153010222363775173116601550386348272}{29585832997862312006671926699406945533867827688156193174001} a^{16} - \frac{3188025336419381866158892278962455569935358658942734361}{29585832997862312006671926699406945533867827688156193174001} a^{14} + \frac{9675325805512267727658602851507089502180438738960883508222}{29585832997862312006671926699406945533867827688156193174001} a^{12} + \frac{4794628857714197613772919989202194308298791307773175059757}{29585832997862312006671926699406945533867827688156193174001} a^{10} + \frac{3322151752041381592951205787474859293015715321467564331963}{29585832997862312006671926699406945533867827688156193174001} a^{8} - \frac{10963117182750925438059394535692496991215370299745012488755}{29585832997862312006671926699406945533867827688156193174001} a^{6} + \frac{1946666955853750892430615769926705057248870038478406712}{9336015461616381194910674250365082213274795736243670929} a^{4} - \frac{259613571237078465311904894961603798834878275295054}{2946044639197343387475757100146759928455284233589041} a^{2} - \frac{191208238156829490578903756333824938037561072281}{929644884568426439720971000361868074615110203089}$, $\frac{1}{29585832997862312006671926699406945533867827688156193174001} a^{19} + \frac{426122810514496153010222363775173116601550386348272}{29585832997862312006671926699406945533867827688156193174001} a^{17} - \frac{3188025336419381866158892278962455569935358658942734361}{29585832997862312006671926699406945533867827688156193174001} a^{15} + \frac{9675325805512267727658602851507089502180438738960883508222}{29585832997862312006671926699406945533867827688156193174001} a^{13} + \frac{4794628857714197613772919989202194308298791307773175059757}{29585832997862312006671926699406945533867827688156193174001} a^{11} + \frac{3322151752041381592951205787474859293015715321467564331963}{29585832997862312006671926699406945533867827688156193174001} a^{9} - \frac{10963117182750925438059394535692496991215370299745012488755}{29585832997862312006671926699406945533867827688156193174001} a^{7} + \frac{1946666955853750892430615769926705057248870038478406712}{9336015461616381194910674250365082213274795736243670929} a^{5} - \frac{259613571237078465311904894961603798834878275295054}{2946044639197343387475757100146759928455284233589041} a^{3} - \frac{191208238156829490578903756333824938037561072281}{929644884568426439720971000361868074615110203089} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 48029980610800 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 189 conjugacy class representatives for t20n1030 are not computed |
| Character table for t20n1030 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.8.85992371875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.8.0.1}{8} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | $16{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 3169 | Data not computed | ||||||
| 27517559 | Data not computed | ||||||